login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes of the form 2^a * 5^b * 7^c + 1 for positive a, b, c.
1

%I #19 Sep 10 2024 20:46:53

%S 71,281,491,701,2801,4481,7001,7841,12251,13721,17921,28001,34301,

%T 54881,70001,78401,85751,122501,125441,137201,168071,240101,280001,

%U 286721,437501,490001

%N Primes of the form 2^a * 5^b * 7^c + 1 for positive a, b, c.

%C Since the factors of 2 and 5 are the same as a factor of 10, a subset of A030430 "primes of form 10n+1." There are subsequences such as 71, 701, 7001, 70001, 700001, 700000001, 7000000001; 281, 2801, 280001, 2800001; 491, 490001, 4900001, 490000001, 49000000001, 490000000001.

%H Charles R Greathouse IV, <a href="/A114992/b114992.txt">Table of n, a(n) for n = 1..10000</a>

%e a(1) = 71 = 2^1 * 5^1 * 7^1 + 1.

%e a(2) = 281 = 2^3 * 5^1 * 7^1 + 1.

%e a(3) = 491 = 2^1 * 5^1 * 7^2 + 1.

%e a(4) = 701 = 2^2 * 5^2 * 7^1 + 1.

%e a(5) = 2801 = 2^4 * 5^2 * 7^1 + 1.

%t With[{nn=30},Take[Select[Union[2^#[[1]]*5^#[[2]]*7^#[[3]]+1&/@Tuples[ Range[nn],3]],PrimeQ],nn]] (* _Harvey P. Dale_, Aug 24 2012 *)

%o (PARI) find(lim)=my(v=List(), t); for(b=1,log(lim\14)\log(5), for(c=1,log(lim\2\5^b)/log(7), t=2*5^b*7^c; while(t<lim, if(ispseudoprime(t+1), listput(v,t+1)); t+=t))); vecsort(Vec(v));

%o find(10^100) \\ _Charles R Greathouse IV_, Feb 17 2011

%Y Cf. A000040, A005109, A030430.

%K nonn

%O 1,1

%A _Jonathan Vos Post_, Feb 22 2006

%E Corrected by _T. D. Noe_, Nov 15 2006