login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A113934
(RSA-704) + 10^n = prime where RSA-704 is the 212 decimal digit unfactored RSA challenge number.
0
206, 356, 1274, 1528, 1568, 2402
OFFSET
1,1
COMMENTS
This sequence shows that the difference between a composite number and a prime rests on the modification of a single decimal digit of the given composite integer.
EXAMPLE
(RSA-704)+ 10^206 is prime.
MATHEMATICA
Position[PrimeQ[Table[ \
740375634795617128280467960974295731425931888892312890849362326389727650340282\
662768919964196251178439958943305021275853701189680982867331732731089309005525\
05116877063299072396380786710086096962537934650563796359 + 10^n, {n, 2000}]], \
True]
PROG
(PARI) \\ Set N to RSA-704
for(n=1, 1e4, if(ispseudoprime(N+10^n), print1(n", "))) \\ Charles R Greathouse IV, Oct 05 2011
CROSSREFS
Sequence in context: A025343 A222619 A252270 * A260101 A113490 A054007
KEYWORD
nonn
AUTHOR
Joao da Silva (zxawyh66(AT)yahoo.com), Jan 30 2006
EXTENSIONS
a(6) from Charles R Greathouse IV, Oct 05 2011
STATUS
approved