

A113490


Semiprimes a such that there exist three semiprimes b, c and d with a^3=b^3+c^3+d^3.


2



206, 519, 703, 869, 1418, 1923, 1945, 2066, 2095, 2127, 2446, 2759, 2867, 2881, 2901, 2913, 2974, 3099, 3155, 3207, 3383, 3398, 3545, 3649, 3777, 3814, 3898, 4435, 4766, 4778, 4873, 4963, 5091, 5105, 5165, 5534, 5582, 5638, 5771, 5834, 5855, 6033, 6098
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

This is the semiprime analog of A114923.
There are only two such semiprimes < 10^4 with more than one solution: 2095 and 9897.


LINKS



EXAMPLE

206^3 = 35^3 + 77^3 + 202^3.
519^3 = 4^3 + 303^3 + 482^3
703^3 = 111^3 + 291^3 + 685^3.
869^3 = 466^3 + 629^3 + 674^3.
2095^3 = 339^3 + 753^3 + 2059^3 = 543^3 + 1119^3 + 1969^3 (two ways).
9897^3 = 537^3 + 1454^3 + 9886^3 = 2071^3 + 3183^3 + 9755^3 (two ways).
Each of these numbers (other than the exponent 3) is a semiprime (A001358).


CROSSREFS



KEYWORD

nonn


AUTHOR



EXTENSIONS



STATUS

approved



