login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113931
(RSA-1536)-10^n = prime where RSA-1536 is the 463 decimal digit unfactored RSA challenge number.
0
OFFSET
1,1
COMMENTS
This sequence shows that the difference between a composite number and a prime rests on the modification of a single decimal digit of the given composite number.
EXAMPLE
(RSA-1536)-10^84 = prime
MATHEMATICA
Position[PrimeQ[Table[ \
184769970321174147430683562020016440301854933866341017147178577491065169671116\
124985933768430543574458561606154457179405222971773252466096064694607124962372\
044202226975675668737842756238950876467844093328515749657884341508847552829818\
672645133986336493190808467199043187438128336350279547028265329780293491615581\
188104984490831954500984839377522725705257859194499387007369575568843693381277\
9613089230392569695253261620823676490316036551371447913932347169566988069 - \
10^n, {n, 1463}]], True]
PROG
(PARI) \\ Set N to RSA-1536
for(n=1, 463, if(ispseudoprime(N-10^n), print1(n", ")))
CROSSREFS
Sequence in context: A219183 A289218 A329182 * A352230 A214866 A111313
KEYWORD
nonn,bref,base,fini,full
AUTHOR
Joao da Silva (zxawyh66(AT)yahoo.com), Jan 30 2006
STATUS
approved