%I #8 Oct 05 2011 08:51:39
%S 84,99,564
%N (RSA-1536)-10^n = prime where RSA-1536 is the 463 decimal digit unfactored RSA challenge number.
%C This sequence shows that the difference between a composite number and a prime rests on the modification of a single decimal digit of the given composite number.
%e (RSA-1536)-10^84 = prime
%t Position[PrimeQ[Table[ \
%t 184769970321174147430683562020016440301854933866341017147178577491065169671116\
%t 124985933768430543574458561606154457179405222971773252466096064694607124962372\
%t 044202226975675668737842756238950876467844093328515749657884341508847552829818\
%t 672645133986336493190808467199043187438128336350279547028265329780293491615581\
%t 188104984490831954500984839377522725705257859194499387007369575568843693381277\
%t 9613089230392569695253261620823676490316036551371447913932347169566988069 - \
%t 10^n, {n, 1463}]], True]
%o (PARI) \\ Set N to RSA-1536
%o for(n=1, 463, if(ispseudoprime(N-10^n), print1(n", ")))
%K nonn,bref,base,fini,full
%O 1,1
%A Joao da Silva (zxawyh66(AT)yahoo.com), Jan 30 2006