login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113873
a(3n) = a(3n-1) + a(3n-2), a(3n+1) = 2n*a(3n) + a(3n-1), a(3n+2) = a(3n+1) + a(3n).
3
1, 1, 2, 3, 8, 11, 19, 87, 106, 193, 1264, 1457, 2721, 23225, 25946, 49171, 517656, 566827, 1084483, 13580623, 14665106, 28245729, 410105312, 438351041, 848456353, 14013652689, 14862109042, 28875761731, 534625820200
OFFSET
0,3
COMMENTS
Without the first two terms, same as A007676 (numerators of convergents to e). - Jonathan Sondow, Aug 16 2006
LINKS
H. Cohn, A short proof of the simple continued fraction expansion of e, Amer. Math. Monthly, 113 (No. 1, 2006), 57-62.
J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality, Amer. Math. Monthly 113 (2006) 637-641.
J. Sondow and K. Schalm, Which partial sums of the Taylor series for e are convergents to e? (and a link to the primes 2, 5, 13, 37, 463), II, Gems in Experimental Mathematics (T. Amdeberhan, L. A. Medina, and V. H. Moll, eds.), Contemporary Mathematics, vol. 517, Amer. Math. Soc., Providence, RI, 2010.
FORMULA
a(n)/A113874(n) -> e.
MAPLE
a[0]:=1: a[1]:=1: a[2]:=2: for n from 3 to 33 do if n mod 3 = 0 then a[n]:=a[n-1]+a[n-2] elif n mod 3 = 1 then a[n]:=2*(n-1)*a[n-1]/3 +a[n-2] else a[n]:=a[n-1]+a[n-2] fi: od: seq(a[n], n=0..33); # Emeric Deutsch, Jan 28 2006
MATHEMATICA
a[0] = a[1] = 1; a[n_] := Switch[ Mod[n, 3], 0, a[n - 1] + a[n - 2], 1, 2(n - 1)/3*a[n - 1] + a[n - 2], 2, a[n - 1] + a[n - 2]]; a /@ Range[0, 30] (* Robert G. Wilson v, Jan 28 2006 *)
CROSSREFS
Sequence in context: A041893 A206241 A295333 * A007676 A042443 A042263
KEYWORD
easy,nonn
AUTHOR
N. J. A. Sloane, Jan 27 2006
EXTENSIONS
More terms from Robert G. Wilson v and Emeric Deutsch, Jan 28 2006
STATUS
approved