OFFSET
0,3
COMMENTS
Without the first two terms, same as A007676 (numerators of convergents to e). - Jonathan Sondow, Aug 16 2006
LINKS
T. D. Noe, Table of n, a(n) for n = 0..201
H. Cohn, A short proof of the simple continued fraction expansion of e, Amer. Math. Monthly, 113 (No. 1, 2006), 57-62.
J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality, Amer. Math. Monthly 113 (2006) 637-641.
J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality, arXiv:0704.1282 [math.HO], 2007-2010.
J. Sondow and K. Schalm, Which partial sums of the Taylor series for e are convergents to e? (and a link to the primes 2, 5, 13, 37, 463), II, Gems in Experimental Mathematics (T. Amdeberhan, L. A. Medina, and V. H. Moll, eds.), Contemporary Mathematics, vol. 517, Amer. Math. Soc., Providence, RI, 2010.
FORMULA
a(n)/A113874(n) -> e.
MAPLE
a[0]:=1: a[1]:=1: a[2]:=2: for n from 3 to 33 do if n mod 3 = 0 then a[n]:=a[n-1]+a[n-2] elif n mod 3 = 1 then a[n]:=2*(n-1)*a[n-1]/3 +a[n-2] else a[n]:=a[n-1]+a[n-2] fi: od: seq(a[n], n=0..33); # Emeric Deutsch, Jan 28 2006
MATHEMATICA
a[0] = a[1] = 1; a[n_] := Switch[ Mod[n, 3], 0, a[n - 1] + a[n - 2], 1, 2(n - 1)/3*a[n - 1] + a[n - 2], 2, a[n - 1] + a[n - 2]]; a /@ Range[0, 30] (* Robert G. Wilson v, Jan 28 2006 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
N. J. A. Sloane, Jan 27 2006
EXTENSIONS
More terms from Robert G. Wilson v and Emeric Deutsch, Jan 28 2006
STATUS
approved