|
|
A113875
|
|
Slowest growing sequence of primes having the prime-pairwise-average property: if i<j, (a(i)+a(j))/2 is prime.
|
|
5
|
|
|
3, 7, 19, 139, 859, 8179, 173059, 1026199, 1827139, 15828679, 13187242759, 18732483199, 912492556939
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Assuming the prime k-tuples conjecture, Granville shows (in section 2.4) that this sequence is infinite.
|
|
LINKS
|
Table of n, a(n) for n=1..13.
Andrew Granville, Prime number patterns
|
|
FORMULA
|
a(n) = 2*A119751(n)+1. - Don Reble, Aug 17 2021
|
|
EXAMPLE
|
The pairwise averages of {3,7,19} are the primes {5,11,13}.
|
|
MATHEMATICA
|
s={3, 7}; i=5; Do[While[ !And@@PrimeQ[(s+Prime[i])/2], i++ ]; AppendTo[s, Prime[i]]; i++, {n, 3, 10}]; s
|
|
CROSSREFS
|
Cf. A113832, A115760, A119751.
Sequence in context: A128024 A245723 A118128 * A111974 A243100 A173400
Adjacent sequences: A113872 A113873 A113874 * A113876 A113877 A113878
|
|
KEYWORD
|
nonn,hard,more
|
|
AUTHOR
|
T. D. Noe, Jan 26 2006
|
|
EXTENSIONS
|
More terms from Don Reble and Giovanni Resta, Feb 15 2006
|
|
STATUS
|
approved
|
|
|
|