login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(3n) = a(3n-1) + a(3n-2), a(3n+1) = 2n*a(3n) + a(3n-1), a(3n+2) = a(3n+1) + a(3n).
3

%I #24 Jun 04 2019 10:37:17

%S 1,1,2,3,8,11,19,87,106,193,1264,1457,2721,23225,25946,49171,517656,

%T 566827,1084483,13580623,14665106,28245729,410105312,438351041,

%U 848456353,14013652689,14862109042,28875761731,534625820200

%N a(3n) = a(3n-1) + a(3n-2), a(3n+1) = 2n*a(3n) + a(3n-1), a(3n+2) = a(3n+1) + a(3n).

%C Without the first two terms, same as A007676 (numerators of convergents to e). - _Jonathan Sondow_, Aug 16 2006

%H T. D. Noe, <a href="/A113873/b113873.txt">Table of n, a(n) for n = 0..201</a>

%H H. Cohn, <a href="https://www.jstor.org/stable/27641837">A short proof of the simple continued fraction expansion of e</a>, Amer. Math. Monthly, 113 (No. 1, 2006), 57-62.

%H J. Sondow, <a href="https://www.jstor.org/stable/27642006">A geometric proof that e is irrational and a new measure of its irrationality</a>, Amer. Math. Monthly 113 (2006) 637-641.

%H J. Sondow, <a href="https://arxiv.org/abs/0704.1282">A geometric proof that e is irrational and a new measure of its irrationality</a>, arXiv:0704.1282 [math.HO], 2007-2010.

%H J. Sondow and K. Schalm, <a href="http://arxiv.org/abs/0709.0671">Which partial sums of the Taylor series for e are convergents to e? (and a link to the primes 2, 5, 13, 37, 463), II</a>, Gems in Experimental Mathematics (T. Amdeberhan, L. A. Medina, and V. H. Moll, eds.), Contemporary Mathematics, vol. 517, Amer. Math. Soc., Providence, RI, 2010.

%F a(n)/A113874(n) -> e.

%p a[0]:=1: a[1]:=1: a[2]:=2: for n from 3 to 33 do if n mod 3 = 0 then a[n]:=a[n-1]+a[n-2] elif n mod 3 = 1 then a[n]:=2*(n-1)*a[n-1]/3 +a[n-2] else a[n]:=a[n-1]+a[n-2] fi: od: seq(a[n],n=0..33); # _Emeric Deutsch_, Jan 28 2006

%t a[0] = a[1] = 1; a[n_] := Switch[ Mod[n, 3], 0, a[n - 1] + a[n - 2], 1, 2(n - 1)/3*a[n - 1] + a[n - 2], 2, a[n - 1] + a[n - 2]]; a /@ Range[0, 30] (* _Robert G. Wilson v_, Jan 28 2006 *)

%K easy,nonn

%O 0,3

%A _N. J. A. Sloane_, Jan 27 2006

%E More terms from _Robert G. Wilson v_ and _Emeric Deutsch_, Jan 28 2006