login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A113850
Numbers whose prime factors are raised to the fifth power.
10
32, 243, 3125, 7776, 16807, 100000, 161051, 371293, 537824, 759375, 1419857, 2476099, 4084101, 5153632, 6436343, 11881376, 20511149, 24300000, 28629151, 39135393, 45435424, 52521875, 69343957, 79235168, 90224199, 115856201
OFFSET
1,1
FORMULA
Sum_{k>=1} 1/a(k) = zeta(5)/zeta(10) - 1 = A157291 - 1. - Amiram Eldar, May 22 2020
a(n) = A005117(n+1)^5. - Chai Wah Wu, Sep 13 2024
EXAMPLE
7776 = 32*243 = 2^5*3^5 so the prime factors, 2 and 3, are raised to the fifth power.
MATHEMATICA
Select[ Range@41^5, Union[Last /@ FactorInteger@# ] == {5} &] (* Robert G. Wilson v *)
Rest[Select[Range[100], SquareFreeQ]^5] (* Vaclav Kotesovec, May 22 2020 *)
PROG
(PARI) allpwrfact(n, p) = \All prime factors are raised to the power p { local(x, j, ln, y, flag); for(x=4, n, y=Vec(factor(x)); ln = length(y[1]); flag=0; for(j=1, ln, if(y[2][j]==p, flag++); ); if(flag==ln, print1(x", ")); ) }
(Python)
from math import isqrt
from sympy import mobius
def A113850(n):
def f(x): return int(n+x+1-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)))
m, k = n, f(n)
while m != k: m, k = k, f(k)
return m**5 # Chai Wah Wu, Sep 13 2024
CROSSREFS
Proper subset of A000584.
Nonunit terms of A329332 column 5 in ascending order.
Sequence in context: A343325 A343285 A153159 * A046454 A050997 A056572
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, Jan 25 2006
EXTENSIONS
More terms from Robert G. Wilson v, Jan 26 2006
Offset corrected by Chai Wah Wu, Sep 13 2024
STATUS
approved