login
A113692
Semiprimes in A054567.
4
6, 69, 106, 265, 334, 411, 589, 799, 1041, 1174, 1315, 1959, 2329, 3394, 4659, 5221, 5815, 7099, 8146, 8511, 10869, 16449, 21979, 23181, 23794, 25681, 26326, 31774, 33949, 35439, 36961, 38515, 40101, 43369, 45051, 48511, 50289, 52099, 54874
OFFSET
1,1
COMMENTS
This sequence, A113692, contains semiprimes from the center straight left along the x-axis in the semiprime spiral of A113688-A113689. A113690 contains semiprimes from the center straight right along the x-axis in the semiprime spiral. A113691 contains semiprimes from the center straight down the y-axis in the semiprime spiral. A113693 contains semiprimes from the center straight up the y-axis in the semiprime spiral.
LINKS
FORMULA
{a(n)} = Intersection of A001358 and A054567. Semiprimes of the form 4*k^2 - 7*k + 4.
EXAMPLE
a(4) = 4*9^2 - 7*9 + 4 = 265 = 5 * 53.
a(5) = 4*10^2 - 7*10 + 4 = 334 = 2 * 167.
a(6) = 4*11^2 - 7*11 + 4 = 411 = 3 * 137.
a(4), a(5) and a(6) are horizontally adjacent in the semiprime spiral, hence part of a clump and not isolated semiprimes as in A113688. a(9), a(10) and a(11) are another such horizontal string of 3 adjacent semiprimes.
a(46) = 4*151^2 - 7*151 + 4 = 90151 = 17 * 5303 is the greatest member under 10^5 (it is coincidence that this integer ends, base 10, with the same 151 that is the index of the quadratic).
MATHEMATICA
Select[Table[4*n^2 - 7*n + 4, {n, 200}], PrimeOmega[#] == 2&] (* Vincenzo Librandi, Sep 22 2012 *)
PROG
(Magma) IsSemiprime:= func<n | &+[d[2]: d in Factorization(n)] eq 2>; [s: n in [2..120] | IsSemiprime(s) where s is 4*n^2 - 7*n + 4]; // Vincenzo Librandi, Sep 22 2012
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Nov 05 2005
STATUS
approved