login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A113019 (Number of digits of n) raised to the power of (the digital root of n). 3
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 2, 4, 8, 16, 32, 64, 128, 256, 512, 2, 4, 8, 16, 32, 64, 128, 256, 512, 2, 4, 8, 16, 32, 64, 128, 256, 512, 2, 4, 8, 16, 32, 64, 128, 256, 512, 2, 4, 8, 16, 32, 64, 128, 256, 512, 2, 4, 8, 16, 32 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,11

COMMENTS

n=1 and 32 are fixed points. Are there any others?

First occurrence of k: 1,10,100,11,10000,100000,1000000,12,101,1000000000, ..., . - Robert G. Wilson v

LINKS

Nathaniel Johnston, Table of n, a(n) for n = 0..10000

FORMULA

a(ijk...) [m digits ijk...] = m^(i+j+k+..[one digit])

a(n)=A055642(n)^A010888(n). - Robert G. Wilson v

EXAMPLE

a(0) = 1^0 = 1.

a(9) = 1^9 = 1.

a(10) = 2^(1+0) = 2.

a(89) = 2^(8+9=17=>1+7) = 2^8 = 256.

MAPLE

A113019 := proc(n) if(n=0)then return 1:fi: return length(n)^(((n-1) mod 9) + 1): end: seq(A113019(n), n=0..100); # Nathaniel Johnston, May 04 2011

MATHEMATICA

f[n_] := If[n == 0, 1, Floor[ Log[10, 10n]]^(Mod[n - 1, 9] + 1)]; Table[ f[n], {n, 0, 73}] (* Robert G. Wilson v, Jan 04 2006 *)

PROG

(PARI) apply( A113019(n)=(logint(n+!n, 10)+1)^((n-1)%9+1), [0..99]) \\ M. F. Hasler, Nov 17 2019

CROSSREFS

Cf. A101337.

Sequence in context: A251759 A243087 A123464 * A329562 A069877 A085940

Adjacent sequences:  A113016 A113017 A113018 * A113020 A113021 A113022

KEYWORD

base,easy,nonn

AUTHOR

Alexandre Wajnberg, Jan 03 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 29 09:21 EDT 2022. Contains 354910 sequences. (Running on oeis4.)