|
|
A113019
|
|
(Number of digits of n) raised to the power of (the digital root of n).
|
|
3
|
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 2, 4, 8, 16, 32, 64, 128, 256, 512, 2, 4, 8, 16, 32, 64, 128, 256, 512, 2, 4, 8, 16, 32, 64, 128, 256, 512, 2, 4, 8, 16, 32, 64, 128, 256, 512, 2, 4, 8, 16, 32, 64, 128, 256, 512, 2, 4, 8, 16, 32
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,11
|
|
COMMENTS
|
n=1 and 32 are fixed points. Are there any others?
First occurrence of k: 1,10,100,11,10000,100000,1000000,12,101,1000000000, ..., . - Robert G. Wilson v
|
|
LINKS
|
Nathaniel Johnston, Table of n, a(n) for n = 0..10000
|
|
FORMULA
|
a(ijk...) [m digits ijk...] = m^(i+j+k+..[one digit])
a(n)=A055642(n)^A010888(n). - Robert G. Wilson v
|
|
EXAMPLE
|
a(0) = 1^0 = 1.
a(9) = 1^9 = 1.
a(10) = 2^(1+0) = 2.
a(89) = 2^(8+9=17=>1+7) = 2^8 = 256.
|
|
MAPLE
|
A113019 := proc(n) if(n=0)then return 1:fi: return length(n)^(((n-1) mod 9) + 1): end: seq(A113019(n), n=0..100); # Nathaniel Johnston, May 04 2011
|
|
MATHEMATICA
|
f[n_] := If[n == 0, 1, Floor[ Log[10, 10n]]^(Mod[n - 1, 9] + 1)]; Table[ f[n], {n, 0, 73}] (* Robert G. Wilson v, Jan 04 2006 *)
|
|
PROG
|
(PARI) apply( A113019(n)=(logint(n+!n, 10)+1)^((n-1)%9+1), [0..99]) \\ M. F. Hasler, Nov 17 2019
|
|
CROSSREFS
|
Cf. A101337.
Sequence in context: A251759 A243087 A123464 * A329562 A069877 A085940
Adjacent sequences: A113016 A113017 A113018 * A113020 A113021 A113022
|
|
KEYWORD
|
base,easy,nonn
|
|
AUTHOR
|
Alexandre Wajnberg, Jan 03 2006
|
|
STATUS
|
approved
|
|
|
|