login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112691
a(n) = J(n+1) mod J(n), J(n)=A001045(n).
1
1, 0, 0, 2, 1, 10, 1, 42, 1, 170, 1, 682, 1, 2730, 1, 10922, 1, 43690, 1, 174762, 1, 699050, 1, 2796202, 1, 11184810, 1, 44739242, 1, 178956970, 1, 715827882, 1, 2863311530, 1, 11453246122, 1, 45812984490, 1, 183251937962, 1, 733007751850, 1, 2932031007402
OFFSET
0,4
FORMULA
G.f.: x*(1-5*x^2+2*x^3+5*x^4-4*x^6) / (1-5*x^2+4*x^4).
a(2*n) = 1 - C(1, n) + C(0, n); a(2*n+1) = 2*A002450(n).
From Colin Barker, Apr 21 2017: (Start)
a(n) = (1 - (-2)^n + 5*(-1)^n + 2^n) / 6 for n>2.
a(n) = 5*a(n-2) - 4*a(n-4) for n>4.
(End)
MATHEMATICA
LinearRecurrence[{0, 5, 0, -4}, {1, 0, 0, 2, 1, 10, 1}, 50] (* Harvey P. Dale, Oct 04 2018 *)
PROG
(PARI) Vec((1 - 5*x^2 + 2*x^3 + 5*x^4 - 4*x^6) / ((1 - x)*(1 + x)*(1 - 2*x)*(1 + 2*x)) + O(x^30)) \\ Colin Barker, Apr 21 2017
CROSSREFS
Sequence in context: A105606 A132995 A114692 * A110169 A144274 A144275
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 15 2005
STATUS
approved