login
A144274
Partition number array, called M32hat(-2)= 'M32(-2)/M3'= 'A143172/A036040', related to A004747(n,m)= |S2(-2;n,m)| (generalized Stirling triangle).
3
1, 2, 1, 10, 2, 1, 80, 10, 4, 2, 1, 880, 80, 20, 10, 4, 2, 1, 12320, 880, 160, 100, 80, 20, 8, 10, 4, 2, 1, 209440, 12320, 1760, 800, 880, 160, 100, 40, 80, 20, 8, 10, 4, 2, 1, 4188800, 209440, 24640, 8800, 6400, 12320, 1760, 800, 320, 200, 880, 160, 100, 40, 16, 80, 20
OFFSET
1,2
COMMENTS
Each partition of n, ordered as in Abramowitz-Stegun (A-St order; for the reference see A134278), is mapped to a nonnegative integer a(n,k) =: M32hat(-2;n,k) with the k-th partition of n in A-St order.
The sequence of row lengths is A000041 (partition numbers) [1, 2, 3, 5, 7, 11, 15, 22, 30, 42,...].
If M32hat(-2;n,k) is summed over those k with fixed number of parts m one obtains triangle S2hat(-2):= A144275(n,m).
FORMULA
a(n,k) = Product_{j=1..n} |S2(-2,j,1)|^e(n,k,j) with |S2(-2,n,1)|= A008544(n-1) = (3*n-4)(!^3) (3-factorials) for n>=2 and 1 if n=1 and the exponent e(n,k,j) of j in the k-th partition of n in the A-St ordering of the partitions of n.
Formally a(n,k)= 'M32(-2)/M3' = 'A143172/A036040' (elementwise division of arrays).
EXAMPLE
a(4,3) = 4 = |S2(-2,2,1)|^2. The relevant partition of 4 is (2^2).
CROSSREFS
Cf. A144269 (M32hat(-1) array). A144279 (M32hat(-3) array).
Sequence in context: A114692 A112691 A110169 * A144275 A247236 A011268
KEYWORD
nonn,easy,tabf
AUTHOR
Wolfdieter Lang, Oct 09 2008
STATUS
approved