|
|
A144275
|
|
Lower triangular array called S2hat(-2) related to partition number array A144274.
|
|
6
|
|
|
1, 2, 1, 10, 2, 1, 80, 14, 2, 1, 880, 100, 14, 2, 1, 12320, 1140, 108, 14, 2, 1, 209440, 14880, 1180, 108, 14, 2, 1, 4188800, 249280, 15400, 1196, 108, 14, 2, 1, 96342400, 4801280, 255400, 15480, 1196, 108, 14, 2, 1, 2504902400, 108574400, 4888960, 256440, 15512
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
If in the partition array M32khat(-2)= A144274 entries with the same parts number m are summed one obtains this triangle of numbers S2hat(-2). In the same way the Stirling2 triangle A008277 is obtained from the partition array M_3 = A036040.
|
|
LINKS
|
|
|
FORMULA
|
a(n,m)=sum(product(|S2(-2;j,1)|^e(n,m,q,j),j=1..n),q=1..p(n,m)) if n>=m>=1, else 0. Here p(n,m)=A008284(n,m), the number of m parts partitions of n and e(n,m,q,j) is the exponent of j in the q-th m part partition of n. |S2(-2,n,1)|= A004747(n,1) = A008544(n-1) = (3*n-4)(!^3) (3-factorials) for n>=2 and 1 if n=1.
|
|
EXAMPLE
|
[1];[2,1];[10,2,1];[80,14,2,1];[880,100,14,2,1];...
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|