login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112312
Least index k such that the n-th prime divides the k-th tribonacci number.
4
4, 8, 15, 6, 9, 7, 29, 19, 30, 78, 15, 20, 36, 83, 30, 34, 65, 69, 101, 133, 32, 19, 271, 110, 20, 187, 14, 185, 106, 173, 587, 80, 12, 35, 11, 224, 72, 38, 42, 315, 101, 26, 73, 172, 383, 27, 84, 362, 35, 250, 37, 29, 507, 305, 55, 38, 178, 332, 62, 537, 778, 459, 31, 124
OFFSET
1,1
COMMENTS
The tribonacci numbers are indexed so that trib(0) = trib(1) = 0, trib(2) = 1, for n>2: trib(n) = trib(n-1) + trib(n-2) + trib(n-3). See A112618 for another version.
Brenner proves that every prime divides some tribonacci number T(n). For the similar 3-step Lucas sequence A001644, there are primes (A106299) that do not divide any term.
LINKS
J. L. Brenner, Linear Recurrence Relations, Amer. Math. Monthly, Vol. 61 (1954), 171-173.
Eric Weisstein's World of Mathematics, MathWorld: Tribonacci Number
FORMULA
a(n) = minimum k such that prime(n) | A000073(k) and A000073(k) >= prime(n). a(n) = minimum k such that A000040(n) | A000073(k) and A000073(k) >= A000040(n).
EXAMPLE
a(1) = 4 because prime(1) = 2 and tribonacci( 4) = 2.
a(2) = 8 because prime(2) = 3 and tribonacci( 8) = 24 = 3 * 2^3.
a(3) = 15 because prime(3) = 5 and tribonacci(15) = 1705 = 5 *(11 * 31).
a(4) = 6 because prime(4) = 7 and tribonacci( 6) = 7.
a(5) = 9 because prime(5) = 11 and tribonacci( 9) = 44 = 11 * 4.
a(6) = 7 because prime(6) = 13 and tribonacci( 7) = 13.
a(7) = 29 because prime(7) = 17 and tribonacci(29) = 8646064 = 17 *(2^4 * 7 * 19 * 239).
MATHEMATICA
a[0] = a[1] = 0; a[2] = 1; a[n_] := a[n] = a[n - 1] + a[n - 2] + a[n - 3]; f[n_] := Module[{k = 2, p = Prime[n]}, While[Mod[a[k], p] != 0, k++ ]; k]; Array[f, 64] (* Robert G. Wilson v *)
CROSSREFS
Cf. also A112618 = this sequence minus 1.
Sequence in context: A174554 A360527 A272048 * A076343 A335382 A272346
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Nov 29 2005
EXTENSIONS
Corrected and extended by Robert G. Wilson v, Dec 01 2005
STATUS
approved