login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111976
Column 0 of triangle A111975, which shifts columns left and up under matrix square.
2
1, 1, 1, 4, 16, 96, 896, 13568, 345088, 15112192, 1159913472, 158164664320, 38737429987328, 17197276791701504, 13946909814794223616, 20801835304287183306752, 57394078732651064041930752
OFFSET
0,4
FORMULA
G.f.: A(x) = 1 + Sum_{n>=1} (1/n!)*Product_{j=0..n-1} L(2^j*x) where L(x) satisfies: x-x^2 = Sum_{j>=1}(1-2^j*x)*Prod_{i=0..j-1}L(2^i*x); and L(x) equals the g.f. of column 0 of the matrix log of A111975 (A111979).
EXAMPLE
G.f. A(x) = 1 + x + x^2 + 4*x^3 + 16*x^4 + 96*x^5 + 896*x^6 +...
= 1 + L(x) + L(x)*L(2*x)/2! + L(x)*L(2*x)*L(2^2*x)/3! +...
where L(x) = x + 16/3!*x^3 + 1536/5!*x^5 - 319488/7!*x^7 +-...
PROG
(PARI) {a(n, q=2)=local(A=Mat(1), B); if(n<0, 0, for(m=1, n+1, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i, B[i, j]=1, if(j==1, B[i, j]=if(i>2, (A^q)[i-1, 2], 1), B[i, j]=(A^q)[i-1, j-1])); )); A=B); return(A[n+1, 1]))}
CROSSREFS
Cf. A111975 (triangle), A111979.
Sequence in context: A293143 A032184 A130683 * A236772 A209299 A091040
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 25 2005
STATUS
approved