login
Column 0 of triangle A111975, which shifts columns left and up under matrix square.
2

%I #4 Mar 30 2012 18:36:50

%S 1,1,1,4,16,96,896,13568,345088,15112192,1159913472,158164664320,

%T 38737429987328,17197276791701504,13946909814794223616,

%U 20801835304287183306752,57394078732651064041930752

%N Column 0 of triangle A111975, which shifts columns left and up under matrix square.

%F G.f.: A(x) = 1 + Sum_{n>=1} (1/n!)*Product_{j=0..n-1} L(2^j*x) where L(x) satisfies: x-x^2 = Sum_{j>=1}(1-2^j*x)*Prod_{i=0..j-1}L(2^i*x); and L(x) equals the g.f. of column 0 of the matrix log of A111975 (A111979).

%e G.f. A(x) = 1 + x + x^2 + 4*x^3 + 16*x^4 + 96*x^5 + 896*x^6 +...

%e = 1 + L(x) + L(x)*L(2*x)/2! + L(x)*L(2*x)*L(2^2*x)/3! +...

%e where L(x) = x + 16/3!*x^3 + 1536/5!*x^5 - 319488/7!*x^7 +-...

%o (PARI) {a(n,q=2)=local(A=Mat(1),B);if(n<0,0, for(m=1,n+1,B=matrix(m,m);for(i=1,m, for(j=1,i, if(j==i,B[i,j]=1,if(j==1,B[i,j]=if(i>2,(A^q)[i-1,2],1), B[i,j]=(A^q)[i-1,j-1]));));A=B);return(A[n+1,1]))}

%Y Cf. A111975 (triangle), A111979.

%K nonn

%O 0,4

%A _Paul D. Hanna_, Aug 25 2005