login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111973
Expansion of ((eta(q^2)eta(q^4))^6/(eta(q)eta(q^8))^4-1)/4 in powers of q.
2
1, 2, 4, 6, 6, 8, 8, 6, 13, 12, 12, 24, 14, 16, 24, 6, 18, 26, 20, 36, 32, 24, 24, 24, 31, 28, 40, 48, 30, 48, 32, 6, 48, 36, 48, 78, 38, 40, 56, 36, 42, 64, 44, 72, 78, 48, 48, 24, 57, 62, 72, 84, 54, 80, 72, 48, 80, 60, 60, 144, 62, 64, 104, 6, 84, 96, 68, 108, 96, 96, 72
OFFSET
1,2
REFERENCES
Bruce C. Berndt, Ramanujan's Notebooks Part V, Springer-Verlag, see p. 373, Entry 31.
Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 78, Eq. (32.29).
LINKS
FORMULA
Multiplicative with a(2)=2, a(2^e)=6 if e>1, a(p^e)=(p^(e+1)-1)/(p-1) if p>2.
G.f.: ((theta_3(q)theta_3(q^2))^2-1)/4 where theta_3(q)=1+2(q+q^4+q^9+...).
G.f.: Sum_{k>0} 2*x^(4k)/(1+x^(4k))^2 +x^(2k-1)/(1-x^(2k-1))^2 = Sum_{k>0} +(2+(-1)^k)k x^(2k)/(1+x^(2k)) +(2k-1)x^(2k-1)/(1-x^(2k-1)). - Michael Somos, Oct 22 2005
MATHEMATICA
f[p_, e_] := (p^(e+1)-1)/(p-1); f[2, 1] = 2; f[2, e_] := 6; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 22 2023 *)
PROG
(PARI) a(n)=if(n<1, 0, sumdiv(n, d, d*(-1)^((d+1)*(n/d+1))*[2, 1, 0, 1][n/d%4+1]))
(PARI) {a(n)= local(A); if(n<1, 0, A=x*O(x^n); polcoeff( ((eta(x^2+A)*eta(x^4+A))^6/(eta(x+A)*eta(x^8+A))^4-1)/4, n))}
(PARI) a(n)= local(x); if(n<1, 0, x=2^valuation(n, 2); sigma(n/x)*if(x>2, 6, x))
(PARI) {a(n)=local(A, p, e); if(n<1, 0, A=factor(n); prod(k=1, matsize(A)[1], if(p=A[k, 1], e=A[k, 2]; if(p==2, 2+4*(e>1), (p^(e+1)-1)/(p-1)))))}
CROSSREFS
Cf. A097057(n)=4*a(n), if n>0.
Sequence in context: A131450 A114218 A133691 * A349787 A161655 A092517
KEYWORD
nonn,mult
AUTHOR
Michael Somos, Aug 23 2005
STATUS
approved