login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111979
Column 0 of the matrix logarithm (A111978) of triangle A111975, which shifts columns left and up under matrix square; these terms are the result of multiplying the element in row n by n!.
3
0, 1, 0, 16, 0, 1536, 0, -319488, 0, 36007575552, 0, -53682434054553600, 0, 1790644857560674043166720, 0, -1280831660558056667387645027942400, 0, 18961467116136182692294341450867551502336000, 0
OFFSET
0,4
COMMENTS
Let q=2; the g.f. of column k of A111975^m (matrix power m) is: 1 + Sum_{n>=1} (m*q^k)^n/n! * Product_{j=0..n-1} A(q^j*x).
FORMULA
E.g.f. A(x): x-x^2 = Sum_{j>=1}(1-2^j*x)/j!*Prod_{i=0..j-1}A(2^i*x). E.g.f. A(x): x+x^2 = Sum_{j>=1}(1-4^j*x^2)/j!*Prod_{i=0..j-1}A(2^i*x).
EXAMPLE
E.g.f. A(x) = x + 16/3!*x^3 + 1536/5!*x^5 - 319488/7!*x^7
+ 36007575552/9!*x^9 - 53682434054553600/11!*x^11 +...
where A(x) satisfies:
x*(1-x) = (1-2*x)*A(x) + (1-2^2*x)*A(x)*A(2*x)/2!
+ (1-2^3*x)*A(x)*A(2*x)*A(2^2*x)/3! +...
PROG
(PARI) {a(n, q=2)=local(A=Mat(1), B); if(n<0, 0, for(m=1, n+1, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i, B[i, j]=1, if(j==1, B[i, j]=if(i>2, (A^q)[i-1, 2], 1), B[i, j]=(A^q)[i-1, j-1])); )); A=B); B=sum(i=1, #A, -(A^0-A)^i/i); return(n!*B[n+1, 1]))}
CROSSREFS
Cf. A111978 (matrix log), A111975 (triangle), A111976, A111811 (variant), A111814 (variant).
Sequence in context: A274377 A221380 A221759 * A309984 A173436 A081263
KEYWORD
sign
AUTHOR
Paul D. Hanna, Aug 25 2005
STATUS
approved