login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A111979 Column 0 of the matrix logarithm (A111978) of triangle A111975, which shifts columns left and up under matrix square; these terms are the result of multiplying the element in row n by n!. 3
0, 1, 0, 16, 0, 1536, 0, -319488, 0, 36007575552, 0, -53682434054553600, 0, 1790644857560674043166720, 0, -1280831660558056667387645027942400, 0, 18961467116136182692294341450867551502336000, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Let q=2; the g.f. of column k of A111975^m (matrix power m) is: 1 + Sum_{n>=1} (m*q^k)^n/n! * Product_{j=0..n-1} A(q^j*x).

LINKS

Table of n, a(n) for n=0..18.

FORMULA

E.g.f. A(x): x-x^2 = Sum_{j>=1}(1-2^j*x)/j!*Prod_{i=0..j-1}A(2^i*x). E.g.f. A(x): x+x^2 = Sum_{j>=1}(1-4^j*x^2)/j!*Prod_{i=0..j-1}A(2^i*x).

EXAMPLE

E.g.f. A(x) = x + 16/3!*x^3 + 1536/5!*x^5 - 319488/7!*x^7

+ 36007575552/9!*x^9 - 53682434054553600/11!*x^11 +...

where A(x) satisfies:

x*(1-x) = (1-2*x)*A(x) + (1-2^2*x)*A(x)*A(2*x)/2!

+ (1-2^3*x)*A(x)*A(2*x)*A(2^2*x)/3! +...

PROG

(PARI) {a(n, q=2)=local(A=Mat(1), B); if(n<0, 0, for(m=1, n+1, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i, B[i, j]=1, if(j==1, B[i, j]=if(i>2, (A^q)[i-1, 2], 1), B[i, j]=(A^q)[i-1, j-1])); )); A=B); B=sum(i=1, #A, -(A^0-A)^i/i); return(n!*B[n+1, 1]))}

CROSSREFS

Cf. A111978 (matrix log), A111975 (triangle), A111976, A111811 (variant), A111814 (variant).

Sequence in context: A274377 A221380 A221759 * A309984 A173436 A081263

Adjacent sequences:  A111976 A111977 A111978 * A111980 A111981 A111982

KEYWORD

sign

AUTHOR

Paul D. Hanna, Aug 25 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 14:38 EST 2019. Contains 329865 sequences. (Running on oeis4.)