login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274377
E.g.f. satisfies: A(x)^A(x) = exp(2*x) * A(-x)^A(-x).
3
1, 1, 0, 1, 0, 16, 0, 736, 0, 67096, 0, 10163176, 0, 2306198896, 0, 732199108096, 0, 309860700130816, 0, 168568765338224896, 0, 114619705107961862656, 0, 95251358122177791486976, 0, 94984793274454431691503616, 0, 111939507886837612683516276736, 0, 153907136552991217284274400567296, 0, 244164979570216285201628515234840576, 0, 442692827509235885935744380253757341696, 0, 909667081143908558901949811564629988048896
OFFSET
0,6
COMMENTS
a(2*n+1) = 6 (mod 10) for n>1 (conjecture).
LINKS
FORMULA
E.g.f.: 1 + Series_Reversion( log( sqrt( (1+x)^(1+x) / (1-x)^(1-x) ) ) ).
E.g.f.: 1 + Series_Reversion( (G(x) - G(-x))/2 ), where G(x) = Series_Reversion(x/LambertW(x) - 1) = (1+x)*log(1+x).
E.g.f.: 1 + Series_Reversion( x - Sum_{n>=1} x^(2*n+1)/(2*n*(2*n+1)) ).
If n is odd then a(n) ~ c * d^n * n^(n-1) / exp(n), where d = 1.37441749603820461..., c = 0.6508250221842049... . - Vaclav Kotesovec, Sep 22 2016
EXAMPLE
E.g.f.: A(x) = 1 + x + x^3/3! + 16*x^5/5! + 736*x^7/7! + 67096*x^9/9! + 10163176*x^11/11! + 2306198896*x^13/13! + 732199108096*x^15/15! + 309860700130816*x^17/17! + 168568765338224896*x^19/19! +...
such that A(x)^A(x) / A(-x)^A(-x) = exp(2*x).
RELATED SERIES.
A(x)^A(x) = 1 + x + 2*x^2/2! + 4*x^3/3! + 16*x^4/4! + 56*x^5/5! + 426*x^6/6! + 2262*x^7/7! + 26944*x^8/8! + 191536*x^9/9! + 3126160*x^10/10! +...+ A275764(n)*x^n/n! +...
Series_Reversion(A(x) - 1) = x - x^3/6 - x^5/20 - x^7/42 - x^9/72 - x^11/110 - x^13/156 - x^15/210 - x^17/272 +...+ -x^(2*n+1)/(2*n*(2*n+1)) +...
Also,
Series_Reversion(A(x) - 1) = (G(x) - G(-x))/2, where G(x) = (1+x)*log(1+x) = Series_Reversion(x/LambertW(x) - 1), and begins:
G(x) = x + x^2/2 - x^3/6 + x^4/12 - x^5/20 + x^6/30 - x^7/42 + x^8/56 - x^9/72 + x^10/90 - x^11/110 + x^12/132 +...+ (-x)^n/(n*(n-1)) +...
GENERATING METHOD.
Start with a(0)=1, a(1)=1, and set a(2*n)=0 for n>0, then use the following criterion to determine the odd-indexed terms.
Given partial sum A(x,2*n) = Sum_{k=0..2*n} a(k)*x^k/k!, and sufficiently large N, the odd-indexed term a(2*n+1) satisfies:
if t > a(2*n+1)/(2*n+1)!, then
t > [x^(2*n+1)] ( A(x,2*n) + t*x^(2*n+1) )^(1-1/N)
else if t <= a(2*n+1)/(2*n+1)! , then
t < [x^(2*n+1)] ( A(x,2*n) + t*x^(2*n+1) )^(1-1/N);
this criterion defines each term of this sequence for n>1.
Using the same method as above, but without setting even-indexed terms to zero, generates x/LambertW(x), e.g.f. of A177885.
RELATED SERIES.
log(A(x)) = x - x^2/2! + 3*x^3/3! - 10*x^4/4! + 60*x^5/5! - 346*x^6/6! + 3108*x^7/7! - 25600*x^8/8! + 306120*x^9/9! - 3283696*x^10/10! + 49021368*x^11/11! - 648526000*x^12/12! + 11606584080*x^13/13! - 182697457216*x^14/14! +...
PROG
(PARI) {a(n) = my(A = 1 + serreverse(x - sum(m=1, n\2+1, x^(2*m+1)/(2*m*(2*m+1)) ) +x^2*O(x^n) ) ); n!*polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
(PARI) /* Generating method (using sufficiently large N and precision) */
\p100
{a(n) = my(N=10^(3*n), A=[1, 1]); for(i=0, n\2, A=concat(A, [0, 0]); A[#A] = round( (#A-1)!*polcoeff( N*1.* Ser(A)^(1-1/N), #A-1) )/(#A-1)! ); n!*A[n+1]}
for(n=0, 40, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 23 2016
STATUS
approved