The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A111766 Numbers occurring in three Pythagorean triples of the form: odd: a, (a^2-1)/2, (a^2+1)/2 or even: a, a^2/4-1, a^2/4+1. 1
 0, 5, 24, 145, 840, 4901, 28560, 166465, 970224, 5654885, 32959080, 192099601, 1119638520, 6525731525, 38034750624, 221682772225, 1292061882720, 7530688524101, 43892069261880, 255821727047185, 1491038293021224, 8690408031080165, 50651409893459760 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS This parallels Cassini's identity for Fibonacci numbers (Mathworld). LINKS Colin Barker, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (5,5,-1). FORMULA a(n) = A000129(n-1)*A000129(n+1) = A000129(n)^2 + (-1)^n. G.f. -x^2*(-5+x) / ( (1+x)*(1-6*x+x^2) ). - R. J. Mathar, Sep 21 2011 a(n) = A001333(n)^2 - A000129(n)^2 for n >= 1. - Richard R. Forberg, Aug 24 2013 From Colin Barker, Nov 04 2016: (Start) a(n) = (6*(-1)^n+(3-2*sqrt(2))^n+(3+2*sqrt(2))^n)/8 for n>0. a(n) = 5*a(n-1)+5*a(n-2)-a(n-3) for n>3. (End) EXAMPLE a(5) = P(4)*P(6) = 12*70 = 840 = P(5)-1 = 29^2-1. PROG (PARI) concat(0, Vec(-x^2*(-5+x)/((1+x)*(1-6*x+x^2)) + O(x^30))) \\ Colin Barker, Nov 04 2016 CROSSREFS Cf. A076218, A078522 (bisections). Sequence in context: A232318 A201952 A221788 * A228067 A322208 A241134 Adjacent sequences: A111763 A111764 A111765 * A111767 A111768 A111769 KEYWORD nonn,easy AUTHOR Jeremy C. Buchanan (jbuchanan(AT)myhww.org), Nov 21 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 20 05:48 EDT 2023. Contains 361359 sequences. (Running on oeis4.)