This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A076218 Numbers n such that 2*n^2 - 3*n + 1 is a square. 8
 0, 1, 5, 145, 4901, 166465, 5654885, 192099601, 6525731525, 221682772225, 7530688524101, 255821727047185, 8690408031080165, 295218051329678401, 10028723337177985445, 340681375412721826705, 11573138040695364122501, 393146012008229658338305 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Lim_{n -> infinity} a(n)/a(n-1) = 33.970562748477140585620264690516... = 17 + 12*sqrt(2). Conjecture: a nonzero number occurs twice in A055524 if and only if it's in this sequence. - J. Lowell, Jul 23 2016 Equivalently, n=0 or both n-1 and 2*n-1 are perfect squares. - Sture Sjöstedt, Feb 22 2017 LINKS Colin Barker, Table of n, a(n) for n = 1..650 Giovanni Lucca, Circle Chains Inscribed in Symmetrical Lenses and Integer Sequences, Forum Geometricorum, Volume 16 (2016) 419-427. Index entries for linear recurrences with constant coefficients, signature (35,-35,1). FORMULA From Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 04 2002: (Start) a(n) = ( (3+(17+12*sqrt(2))^(n-1)) + (3+(17-12*sqrt(2))^(n-1)) )/8 for n>=1. a(n) = 35 * a(n-1) - 35 * a(n-2) + a(n-3). G.f.: (x-30*x^2+5*x^3)/(1-35*x+35*x^2-x^3). (End) Product of adjacent odd-indexed Pell numbers (A000129). - Gary W. Adamson, Jun 07 2003 sqrt(2) - 1 = 0.414213562... = 2/5 + 2/145 + 2/4901 + 2/166465... = Sum_{n>=2} 2/a(n). - Gary W. Adamson, Jun 07 2003 For n > 0, one more than square of adjacent even-indexed Pell numbers (A000129). - Charlie Marion, Mar 09 2005 a(n) = A001652(n-1) + 2*A001652(n-1)*A001652(n-2) + A001652(n-2) + 2. - Charlie Marion, Nov 24 2018 EXAMPLE 5 is in the sequence since 2*5^2 - 3*5 + 1 = 50 - 15 + 1 = 36 is a square. - Michael B. Porter, Jul 24 2016 MATHEMATICA Join[{0}, LinearRecurrence[{35, -35, 1}, {1, 5, 145}, 20]] (* Harvey P. Dale, Nov 27 2012 *) PROG (PARI) a(n)=if(n>1, ([0, 1, 0; 0, 0, 1; 1, -35, 35]^n*[145; 5; 1])[1, 1], 0) \\ Charles R Greathouse IV, Jul 24 2016 (PARI) concat(0, Vec(x^2*(1-30*x+5*x^2) / ((1-x)*(1-34*x+x^2)) + O(x^30))) \\ Colin Barker, Nov 21 2016 CROSSREFS Cf. similar sequences with closed form ((1 + sqrt(2))^(4*r) + (1 - sqrt(2))^(4*r))/8 + k/4: A084703 (k=-1), this sequence (k=3), A278310 (k=-5). Sequence in context: A322954 A254711 A273920 * A267989 A307902 A281427 Adjacent sequences:  A076215 A076216 A076217 * A076219 A076220 A076221 KEYWORD nonn,easy AUTHOR Gregory V. Richardson, Nov 03 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 13 08:08 EST 2019. Contains 329968 sequences. (Running on oeis4.)