The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A228067 Difference of consecutive integers nearest to Li(10^n) - Li(2), where Li(x) = integral(0..x, dt/log(t)) (A190802, known as Gauss' approximation for the number of primes below 10^n). 2
 5, 24, 148, 1068, 8384, 68998, 586290, 5097291, 45087026, 404206380, 3663010786, 33489883880, 308457695529, 2858876419882, 26639629409596, 249393772773269, 2344318821362265, 22116397144079593, 209317713066531967, 1986761935407441102 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS This sequence gives a good approximation of the number of primes with n digits (A006879); see (A228068). Note that A190802(n)=(Li(10^n)-Li(2)) is not defined for n=0. Its value is arbitrarily set to 0. LINKS Vladimir Pletser, Table of n, a(n) for n = 1..500 Eric Weisstein's World of Mathematics, Prime Counting Function Eric Weisstein's World of Mathematics, Logarithmic Integral FORMULA a(n) = A190802(n) - A190802(n-1). EXAMPLE For n = 1, A190802(1) - A190802(0) = 5-0 = 5. CROSSREFS Cf. A006879, A190802, A228068, A228065. Sequence in context: A201952 A221788 A111766 * A322208 A241134 A340358 Adjacent sequences: A228064 A228065 A228066 * A228068 A228069 A228070 KEYWORD nonn AUTHOR Vladimir Pletser, Aug 06 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 2 19:34 EST 2023. Contains 360024 sequences. (Running on oeis4.)