login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111136
a(n) = Sum_{k=1..n} Fibonacci(prime(k)).
2
1, 3, 8, 21, 110, 343, 1940, 6121, 34778, 549007, 1895276, 26053093, 191633234, 625127671, 3596342744, 56912633917, 1013634659958, 3518365441919, 48463935654772, 356525456824901, 1163040989874294, 15635375014550515, 114830228109306012, 1894809644114020201
OFFSET
1,2
FORMULA
a(n) = Sum_{i=1..n} A000045(A000040(i)). - Wesley Ivan Hurt, Feb 02 2014
EXAMPLE
The first 3 primes are 2, 3 and 5. So a(3) = F(2)+F(3)+F(5) = 1+2+5 = 8.
MAPLE
with(numtheory); with(combinat); A111136:=n->sum(fibonacci(ithprime(i)), i=1..n); seq(A111136(n), n=1..30); # Wesley Ivan Hurt, Feb 02 2014
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 0, a(n-1)+
(<<0|1>, <1|1>>^ithprime(n))[1, 2])
end:
seq(a(n), n=1..25); # Alois P. Heinz, Jun 24 2022
MATHEMATICA
f[n_] := Sum[ Fibonacci[ Prime[i]], {i, n}]; Array[f, 22] (* Robert G. Wilson v *)
CROSSREFS
Partial sums of A030426.
Sequence in context: A361574 A353424 A156291 * A374340 A348636 A063937
KEYWORD
nonn
AUTHOR
Leroy Quet, Oct 17 2005
EXTENSIONS
More terms from Robert G. Wilson v, Oct 21 2005
STATUS
approved