login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A063937
Sum of unitary divisors of n is a square > 1.
4
3, 8, 22, 24, 66, 70, 76, 94, 115, 119, 170, 210, 214, 217, 228, 252, 265, 282, 310, 316, 322, 345, 357, 382, 385, 490, 497, 510, 517, 522, 527, 580, 612, 642, 651, 679, 710, 716, 742, 745, 782, 795, 801, 833, 862, 889, 920, 930, 935, 948, 952, 966, 970
OFFSET
1,1
COMMENTS
A unitary divisor of n is a divisor d of n such that gcd(d, n/d) = 1.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harry J. Smith)
FORMULA
a(n) > 1 and A010052(A034448(a(n))) = 1. - Reinhard Zumkeller, Aug 15 2012
EXAMPLE
The unitary divisors of 3 are 1,3 and then 3 + 1 = 4 is a square.
MATHEMATICA
udQ[n_]:=Module[{totdivs=Total[Sort[Flatten[Outer[Times, Sequence@@({1, #}&/@Power@@@FactorInteger[n])]]]]}, totdivs>1&&IntegerQ[Sqrt[totdivs]]]; Select[Range[1000], udQ] (* Harvey P. Dale, Apr 22 2012, using program from Eric Weisstein at http://mathworld.wolfram.com/UnitaryDivisor.html *)
PROG
(PARI) us(n) = sumdiv(n, d, if(gcd(d, n/d)==1, d))
{ n=0; for (m=1, 10^9, u=us(m); if (issquare(u) && u > 1, write("b063937.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Sep 03 2009
(Haskell)
import Data.List (findIndices)
a063937 n = a063937_list !! (n-1)
a063937_list = map (+ 2) $
findIndices ((== 1) . a010052) $ tail a034448_list
-- Reinhard Zumkeller, Aug 15 2012
CROSSREFS
Sequence in context: A111136 A374340 A348636 * A363593 A178525 A266187
KEYWORD
easy,nice,nonn
AUTHOR
Felice Russo, Aug 31 2001
STATUS
approved