login
A110497
a(1) = 1; a(m) = maximum denominator possible with a continued fraction [b(1);b(2),b(3),...,b(m-1)], where (b(1),b(2),b(3),...,b(m-1)) is a permutation of (a(1),a(2),a(3),...,a(m-1)).
1
1, 1, 1, 2, 5, 28, 795, 632167, 399635138154, 159708243647367169100509, 25506723088926795724936617220833650734525459594, 650592922735191299575059973922272937442761432150679274453311138653498403940208837571053997389
OFFSET
1,4
COMMENTS
Apparently a(n) = A105787(n-1) for n >= 2. - Georg Fischer, Nov 02 2018
MATHEMATICA
a[1] = 1; a[n_] := a[n] = Union[ Denominator /@ FromContinuedFraction /@ Permutations[ Table[ a[i], {i, n - 1}]]] [[ -1]]; Table[ a[n], {n, 11}]
CROSSREFS
Cf. A110498.
Sequence in context: A292499 A306893 A105787 * A000472 A248235 A358444
KEYWORD
nonn
AUTHOR
STATUS
approved