login
A110048
Expansion of 1/((1+2*x)*(1-4*x-4*x^2)).
6
1, 2, 16, 64, 336, 1568, 7680, 36864, 178432, 860672, 4157440, 20070400, 96915456, 467935232, 2259419136, 10909384704, 52675280896, 254338531328, 1228055511040, 5929575645184, 28630525673472, 138240403177472
OFFSET
0,2
COMMENTS
Floretion Algebra Multiplication Program, FAMP Code:
-kbasejseq[A*B] with A = + 'i - .5'j + .5'k - .5j' + .5k' - 'ii' - .5'ij' - .5'ik' - .5'ji' - .5'ki' and B = - .5'i + .5'j + 'k - .5i' + .5j' - 'kk' - .5'ik' - .5'jk' - .5'ki' - .5'kj'
See also comment for A110047.
FORMULA
Superseeker finds: a(n+1) = 2*A086348(n+1) (A086348's offset is 1: On a 3 X 3 board, number of n-move routes of chess king ending at central cell); binomial transform matches A084159 (Pell oblongs); j-th coefficient of g.f.*(1+x)^j matches A079291 (Squares of Pell numbers); a(n) + a(n+1) = A086346(n+2) (A086346's offset is 1: On a 3 X 3 board, the number of n-move paths for a chess king ending in a given corner cell.)
From Maksym Voznyy (voznyy(AT)mail.ru), Jul 24 2008: (Start)
a(n) = 2*a(n-1) + 12*a(n-2) + 8*a(n-3), where a(1)=1, a(2)=2, a(3)=16.
a(n) = 2^(n-3)*( 4*(-1)^(1-n) + (sqrt(2)-1)^(-n) + (-sqrt(2)-1)^(-n)) . (End)
a(n) = 2^n*A097076(n+1). - R. J. Mathar, Mar 08 2021
MAPLE
seriestolist(series(1/((1+2*x)*(1-4*x-4*x^2)), x=0, 40));
MATHEMATICA
CoefficientList[Series[1/((1+2x)(1-4x-4x^2)), {x, 0, 40}], x] (* or *) LinearRecurrence[{2, 12, 8}, {1, 2, 16}, 41] (* Harvey P. Dale, Nov 02 2011 *)
PROG
(Magma) [2^(n-2)*(Evaluate(DicksonFirst(n+1, -1), 2) +2*(-1)^n): n in [0..40]]; // G. C. Greubel, Aug 18 2022
(SageMath) [2^(n-2)*(lucas_number2(n+1, 2, -1) +2*(-1)^n) for n in (0..40)] # G. C. Greubel, Aug 18 2022
KEYWORD
easy,nonn
AUTHOR
Creighton Dement, Jul 10 2005
STATUS
approved