The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A109538 a(n) = a(n-2) + a(n-3) + a(n-4) + a(n-5) + a(n-6) + a(n-7). 9
 1, 1, 1, 1, 1, 1, 1, 6, 6, 11, 16, 26, 41, 66, 106, 166, 266, 421, 671, 1066, 1696, 2696, 4286, 6816, 10836, 17231, 27396, 43561, 69261, 110126, 175101, 278411, 442676, 703856, 1119136, 1779431, 2829306, 4498611, 7152816, 11373016, 18083156, 28752316 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 LINKS Harvey P. Dale, Table of n, a(n) for n = 0..1000 Peter Borwein and Kevin G. Hare, Some computations on Pisot and Salem numbers, 2000, table 1, p. 7. Peter Borwein and Kevin G. Hare, Some computations on the spectra of Pisot and Salem numbers, Math. Comp. 71 (2002), 767-780. Index entries for linear recurrences with constant coefficients, signature (0,1,1,1,1,1,1). FORMULA G.f.: (1 + x - x^3 - 2*x^4 - 3*x^5 - 4*x^6) / (1 - x^2 - x^3 - x^4 - x^5 - x^6 - x^7). - Colin Barker, Dec 17 2017 MATHEMATICA LinearRecurrence[{0, 1, 1, 1, 1, 1, 1}, {1, 1, 1, 1, 1, 1, 1}, 50] (* Harvey P. Dale, Dec 29 2012 *) PROG (PARI) Vec((1 + x - x^3 - 2*x^4 - 3*x^5 - 4*x^6) / (1 - x^2 - x^3 - x^4 - x^5 - x^6 - x^7) + O(x^50)) \\ Colin Barker, Dec 17 2017 (Magma) m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1 + x-x^3-2*x^4-3*x^5-4*x^6)/(1-x^2-x^3-x^4-x^5-x^6-x^7))); // G. C. Greubel, Nov 03 2018 CROSSREFS Cf. A107479, A107480, A109543, A109544, A114749, A125950, A130844, A143335, A147851. Sequence in context: A095899 A346530 A163757 * A212534 A173319 A359257 Adjacent sequences: A109535 A109536 A109537 * A109539 A109540 A109541 KEYWORD nonn,easy AUTHOR Roger L. Bagula, Jun 20 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 25 08:54 EDT 2023. Contains 361520 sequences. (Running on oeis4.)