|
|
A109538
|
|
a(n) = a(n-2) + a(n-3) + a(n-4) + a(n-5) + a(n-6) + a(n-7).
|
|
9
|
|
|
1, 1, 1, 1, 1, 1, 1, 6, 6, 11, 16, 26, 41, 66, 106, 166, 266, 421, 671, 1066, 1696, 2696, 4286, 6816, 10836, 17231, 27396, 43561, 69261, 110126, 175101, 278411, 442676, 703856, 1119136, 1779431, 2829306, 4498611, 7152816, 11373016, 18083156, 28752316
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,8
|
|
LINKS
|
Harvey P. Dale, Table of n, a(n) for n = 0..1000
Peter Borwein and Kevin G. Hare, Some computations on Pisot and Salem numbers, 2000, table 1, p. 7.
Peter Borwein and Kevin G. Hare, Some computations on the spectra of Pisot and Salem numbers, Math. Comp. 71 (2002), 767-780.
Index entries for linear recurrences with constant coefficients, signature (0,1,1,1,1,1,1).
|
|
FORMULA
|
G.f.: (1 + x - x^3 - 2*x^4 - 3*x^5 - 4*x^6) / (1 - x^2 - x^3 - x^4 - x^5 - x^6 - x^7). - Colin Barker, Dec 17 2017
|
|
MATHEMATICA
|
LinearRecurrence[{0, 1, 1, 1, 1, 1, 1}, {1, 1, 1, 1, 1, 1, 1}, 50] (* Harvey P. Dale, Dec 29 2012 *)
|
|
PROG
|
(PARI) Vec((1 + x - x^3 - 2*x^4 - 3*x^5 - 4*x^6) / (1 - x^2 - x^3 - x^4 - x^5 - x^6 - x^7) + O(x^50)) \\ Colin Barker, Dec 17 2017
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1 + x-x^3-2*x^4-3*x^5-4*x^6)/(1-x^2-x^3-x^4-x^5-x^6-x^7))); // G. C. Greubel, Nov 03 2018
|
|
CROSSREFS
|
Cf. A107479, A107480, A109543, A109544, A114749, A125950, A130844, A143335, A147851.
Sequence in context: A095899 A346530 A163757 * A212534 A173319 A359257
Adjacent sequences: A109535 A109536 A109537 * A109539 A109540 A109541
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Roger L. Bagula, Jun 20 2005
|
|
STATUS
|
approved
|
|
|
|