login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A109538 a(n) = a(n-2) + a(n-3) + a(n-4) + a(n-5) + a(n-6) + a(n-7). 9
1, 1, 1, 1, 1, 1, 1, 6, 6, 11, 16, 26, 41, 66, 106, 166, 266, 421, 671, 1066, 1696, 2696, 4286, 6816, 10836, 17231, 27396, 43561, 69261, 110126, 175101, 278411, 442676, 703856, 1119136, 1779431, 2829306, 4498611, 7152816, 11373016, 18083156, 28752316 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,8

LINKS

Harvey P. Dale, Table of n, a(n) for n = 0..1000

Peter Borwein and Kevin G. Hare, Some computations on Pisot and Salem numbers, 2000, table 1, p. 7.

Peter Borwein and Kevin G. Hare, Some computations on the spectra of Pisot and Salem numbers, Math. Comp. 71 (2002), 767-780.

Index entries for linear recurrences with constant coefficients, signature (0,1,1,1,1,1,1).

FORMULA

G.f.: (1 + x - x^3 - 2*x^4 - 3*x^5 - 4*x^6) / (1 - x^2 - x^3 - x^4 - x^5 - x^6 - x^7). - Colin Barker, Dec 17 2017

MATHEMATICA

LinearRecurrence[{0, 1, 1, 1, 1, 1, 1}, {1, 1, 1, 1, 1, 1, 1}, 50] (* Harvey P. Dale, Dec 29 2012 *)

PROG

(PARI) Vec((1 + x - x^3 - 2*x^4 - 3*x^5 - 4*x^6) / (1 - x^2 - x^3 - x^4 - x^5 - x^6 - x^7) + O(x^50)) \\ Colin Barker, Dec 17 2017

(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1 + x-x^3-2*x^4-3*x^5-4*x^6)/(1-x^2-x^3-x^4-x^5-x^6-x^7))); // G. C. Greubel, Nov 03 2018

CROSSREFS

Cf. A107479, A107480, A109543, A109544, A114749, A125950, A130844, A143335, A147851.

Sequence in context: A095899 A346530 A163757 * A212534 A173319 A359257

Adjacent sequences: A109535 A109536 A109537 * A109539 A109540 A109541

KEYWORD

nonn,easy

AUTHOR

Roger L. Bagula, Jun 20 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 25 08:54 EDT 2023. Contains 361520 sequences. (Running on oeis4.)