login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A125950
a(0)=a(1)=...=a(9)=1; a(n) = - a(n-1) + a(n-3) + a(n-4) + a(n-5) + a(n-6) + a(n-7) - a(n-9) - a(n-10).
10
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 3, 3, 4, 4, 5, 6, 7, 8, 10, 11, 13, 16, 18, 22, 25, 30, 35, 41, 49, 57, 67, 79, 93, 109, 129, 151, 178, 209, 246, 290, 340, 401, 471, 554, 652, 767, 902, 1061, 1248, 1468, 1727, 2031, 2390, 2810, 3306, 3889, 4574, 5381, 6329
OFFSET
0,11
COMMENTS
a(n) = O(n^c), where c is the larger real root of x^10+x^9-x^7-x^6-x^5-x^4-x^3+x+1, 1.176280818..., the smallest known Salem constant.
REFERENCES
Wolfram, S., A New Kind of Science. Champaign, IL: Wolfram Media, pp. 82-92, 2002.
LINKS
E. Ghate and E. Hironaka, The Arithmetic And Geometry Of Salem Numbers, Bull. Amer. Math. Soc. 38 (2001), 293-314.
Eric Weisstein's World of Mathematics, MathWorld: Salem Constants
Eric Weisstein's World of Mathematics, MathWorld: Substitution System
Index entries for linear recurrences with constant coefficients, signature (-1,0,1,1,1,1,1,0,-1,-1). [From R. J. Mathar, Jun 30 2010]
FORMULA
G.f.: ( 1+2*x+2*x^2+x^3-x^5-2*x^6-3*x^7-3*x^8-2*x^9 ) / ( 1+x-x^3-x^4-x^5-x^6-x^7+x^9+x^10 ). [R. J. Mathar, Jun 30 2010]
MATHEMATICA
LinearRecurrence[{-1, 0, 1, 1, 1, 1, 1, 0, -1, -1}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 70] (* Harvey P. Dale, May 31 2013 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Luis A Restrepo (luisiii(AT)mac.com), Feb 04 2007
EXTENSIONS
Edited by Don Reble, Mar 09 2007
STATUS
approved