OFFSET
0,9
COMMENTS
Number of partitions of n into parts 3, 5, 7, and 8. - Vincenzo Librandi, Jun 03 2014
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (0,0,1,0,1,0,1,0,0,-1,-1,-1,-1,0,0,1,0,1,0,1,0,0,-1).
FORMULA
Euler transform of length 8 sequence [ 0, 0, 1, 0, 1, 0, 1, 1]. - Michael Somos, Jun 03 2014
G.f.: 1/((1-x^3)*(1-x^5)*(1-x^7)*(1-x^8)). - Michael Somos, Jun 03 2014
a(-23 - n) = - a(n) for all n in Z. - Michael Somos, Jun 03 2014
a(n) = a(n-3) + a(n-5) + a(n-7) - a(n-10) - a(n-11) - a(n-12) - a(n-13) + a(n-16) + a(n-18) + a(n-20) - a(n-23). - Wesley Ivan Hurt, Apr 16 2023
EXAMPLE
G.f. = 1 + x^3 + x^5 + x^6 + x^7 + 2*x^8 + x^9 + 2*x^10 + 2*x^11 + 2*x^12 + ...
MATHEMATICA
CoefficientList[Series[1/((1 - x^3) (1 - x^5) (1 - x^7) (1 - x^8)), {x, 0, 100}], x] (* Vincenzo Librandi, Jun 03 2014 *)
PROG
(PARI) {a(n) = my(s = n<0); if( s, n = -23 - n); (-1)^s * polcoeff( 1 / ((1 - x^3) * (1 - x^5) * (1 - x^7) * (1 - x^8)) + x * O(x^n), n)}; /* Michael Somos, Jun 03 2014 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved