login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A029278
Expansion of 1/((1-x^3)(1-x^5)(1-x^7)(1-x^8)).
1
1, 0, 0, 1, 0, 1, 1, 1, 2, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 6, 7, 7, 8, 9, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 24, 25, 27, 28, 30, 32, 33, 36, 37, 39, 42, 43, 46, 48, 50, 53, 55, 58, 61, 63, 66, 69, 72, 75, 78, 82, 85, 88, 92, 95, 99, 103, 107
OFFSET
0,9
COMMENTS
Number of partitions of n into parts 3, 5, 7, and 8. - Vincenzo Librandi, Jun 03 2014
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,1,0,1,0,1,0,0,-1,-1,-1,-1,0,0,1,0,1,0,1,0,0,-1).
FORMULA
Euler transform of length 8 sequence [ 0, 0, 1, 0, 1, 0, 1, 1]. - Michael Somos, Jun 03 2014
G.f.: 1/((1-x^3)*(1-x^5)*(1-x^7)*(1-x^8)). - Michael Somos, Jun 03 2014
a(-23 - n) = - a(n) for all n in Z. - Michael Somos, Jun 03 2014
a(n) = a(n-3) + a(n-5) + a(n-7) - a(n-10) - a(n-11) - a(n-12) - a(n-13) + a(n-16) + a(n-18) + a(n-20) - a(n-23). - Wesley Ivan Hurt, Apr 16 2023
EXAMPLE
G.f. = 1 + x^3 + x^5 + x^6 + x^7 + 2*x^8 + x^9 + 2*x^10 + 2*x^11 + 2*x^12 + ...
MATHEMATICA
CoefficientList[Series[1/((1 - x^3) (1 - x^5) (1 - x^7) (1 - x^8)), {x, 0, 100}], x] (* Vincenzo Librandi, Jun 03 2014 *)
PROG
(PARI) {a(n) = my(s = n<0); if( s, n = -23 - n); (-1)^s * polcoeff( 1 / ((1 - x^3) * (1 - x^5) * (1 - x^7) * (1 - x^8)) + x * O(x^n), n)}; /* Michael Somos, Jun 03 2014 */
CROSSREFS
Sequence in context: A024154 A117875 A084840 * A125950 A323088 A052954
KEYWORD
nonn,easy
AUTHOR
STATUS
approved