login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(0)=a(1)=...=a(9)=1; a(n) = - a(n-1) + a(n-3) + a(n-4) + a(n-5) + a(n-6) + a(n-7) - a(n-9) - a(n-10).
10

%I #30 Dec 26 2022 06:08:12

%S 1,1,1,1,1,1,1,1,1,1,2,1,2,2,2,3,3,4,4,5,6,7,8,10,11,13,16,18,22,25,

%T 30,35,41,49,57,67,79,93,109,129,151,178,209,246,290,340,401,471,554,

%U 652,767,902,1061,1248,1468,1727,2031,2390,2810,3306,3889,4574,5381,6329

%N a(0)=a(1)=...=a(9)=1; a(n) = - a(n-1) + a(n-3) + a(n-4) + a(n-5) + a(n-6) + a(n-7) - a(n-9) - a(n-10).

%C a(n) = O(n^c), where c is the larger real root of x^10+x^9-x^7-x^6-x^5-x^4-x^3+x+1, 1.176280818..., the smallest known Salem constant.

%D Wolfram, S., A New Kind of Science. Champaign, IL: Wolfram Media, pp. 82-92, 2002.

%H E. Ghate and E. Hironaka, <a href="https://doi.org/10.1090/S0273-0979-01-00902-8">The Arithmetic And Geometry Of Salem Numbers</a>, Bull. Amer. Math. Soc. 38 (2001), 293-314.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SalemConstants.html">MathWorld: Salem Constants</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SubstitutionSystem.html">MathWorld: Substitution System</a>

%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (-1,0,1,1,1,1,1,0,-1,-1). [From _R. J. Mathar_, Jun 30 2010]

%F G.f.: ( 1+2*x+2*x^2+x^3-x^5-2*x^6-3*x^7-3*x^8-2*x^9 ) / ( 1+x-x^3-x^4-x^5-x^6-x^7+x^9+x^10 ). [_R. J. Mathar_, Jun 30 2010]

%t LinearRecurrence[{-1,0,1,1,1,1,1,0,-1,-1},{1,1,1,1,1,1,1,1,1,1},70] (* _Harvey P. Dale_, May 31 2013 *)

%Y Cf. A070178, A029826, A107480, A127193, A127194, A127624.

%K nonn,easy

%O 0,11

%A Luis A Restrepo (luisiii(AT)mac.com), Feb 04 2007

%E Edited by _Don Reble_, Mar 09 2007