login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109535
a(0) = 1, a(n) = n+a(floor(n/2)) if n mod 2 = 0, a(n) = 2n-a(floor((n-1)/2)) if n mod 2 = 1.
0
1, 1, 3, 5, 7, 7, 11, 9, 15, 11, 17, 15, 23, 15, 23, 21, 31, 19, 29, 27, 37, 25, 37, 31, 47, 27, 41, 39, 51, 35, 51, 41, 63, 35, 53, 51, 65, 45, 65, 51, 77, 45, 67, 61, 81, 53, 77, 63, 95, 51, 77, 75, 93, 65, 93, 71, 107, 63, 93, 83, 111, 71, 103, 85, 127, 67, 101, 99, 121, 85
OFFSET
0,3
COMMENTS
A slightly different recurrence relation, a(0) = 1, a(n) = n+a(floor(n/2)) if n mod 2 = 0, a(n) = 3n-a(floor((n-1)/2)) if n mod 2 = 1, leads to the odious numbers (odd number of 1's in binary expansion; A000069).
MAPLE
a:=proc(n) if n = 0 then 1 elif n mod 2 = 0 then n+a(floor(n/2)) else 2*n-a(floor((n-1)/2)) fi end: seq(a(n), n=0..70);
MATHEMATICA
a[0] = 1; a[n_] := a[n] = If[Mod[n, 2] == 0, a[Floor[n/2]] + n, -a[Floor[(n - 1)/2]] + 2*n] aa = Table[a[n], {n, 0, 100}]
CROSSREFS
Cf. A000069.
Sequence in context: A228543 A367928 A254764 * A361327 A180496 A082433
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Jun 18 2005
STATUS
approved