login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A147851 Expansion of 1/(1 - x^3 - x^4 - x^5 + x^8)^2. 10
1, 0, 0, 2, 2, 2, 3, 6, 7, 10, 15, 18, 27, 38, 50, 66, 92, 126, 165, 224, 300, 400, 536, 714, 948, 1258, 1676, 2218, 2932, 3882, 5128, 6768, 8924, 11760, 15479, 20366, 26780, 35174, 46182, 60602, 79473, 104158, 136445, 178654, 233797, 305834, 399881 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Roger L. Bagula, Base Polynomial Mathematica Program

Michael Mossinghoff, Small Salem Numbers

Index entries for linear recurrences with constant coefficients, signature (0,0,2,2,2,-1,-2,-5,-2,-1,2,2,2,0,0,-1).

FORMULA

a(n) = 2*a(n-3) + 2*a(n-4) + 2*a(n-5) - a(n-6) - 2*a(n-7) - 5*a(n-8) - 2*a(n-9) - a(n-10) + 2*a(n-11) + 2*a(n-12) + 2*a(n-13) - a(n-16). - Franck Maminirina Ramaharo, Nov 02 2018

MATHEMATICA

CoefficientList[Series[1/(1 - x^3 - x^4 - x^5 + x^8)^2, {x, 0, 50}], x]

PROG

(PARI) x='x+O('x^50); Vec(1/(1-x^3-x^4-x^5+x^8)^2) \\ G. C. Greubel, Nov 03 2018

(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1 -x^3-x^4-x^5+x^8)^2)); // G. C. Greubel, Nov 03 2018

CROSSREFS

Cf. A107479, A107480, A109538, A109543, A109544, A114749, A125950, A130844, A143335.

Sequence in context: A293518 A057040 A096235 * A321380 A218694 A143596

Adjacent sequences: A147848 A147849 A147850 * A147852 A147853 A147854

KEYWORD

nonn,easy

AUTHOR

Roger L. Bagula, Nov 15 2008

EXTENSIONS

Name clarified by Franck Maminirina Ramaharo, Nov 02 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 26 08:52 EDT 2023. Contains 361529 sequences. (Running on oeis4.)