

A108352


a(n) = primal code characteristic of n, which is the least positive integer, if any, such that (n o)^k = 1, otherwise equal to 0. Here "o" denotes the primal composition operator, as illustrated in A106177 and A108371 and (n o)^k = n o ... o n, with k occurrences of n.


21



1, 0, 2, 2, 2, 0, 2, 2, 0, 0, 2, 0, 2, 0, 2, 2, 2, 0, 2, 3, 2, 0, 2, 3, 2, 0, 2, 3, 2, 0, 2, 2, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 3, 0, 0, 2, 3, 2, 0, 2, 3, 2, 0, 2, 3, 2, 0, 2, 0, 2, 0, 0, 2, 2, 0, 2, 3, 2, 0, 2, 0, 2, 0, 3, 3, 2, 0, 2, 3, 2, 0, 2, 0, 2, 0, 2, 3, 2, 0, 2, 3, 2, 0, 2, 3, 2, 0, 0, 2, 2, 0, 2, 3, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


LINKS



FORMULA



EXAMPLE

a(1) = 1 because (1 o)^1 = ({ } o)^1 = 1.
a(2) = 0 because (2 o)^k = (1:1 o)^k = 2, for all positive k.
a(3) = 2 because (3 o)^2 = (2:1 o)^2 = 1.
a(4) = 2 because (4 o)^2 = (1:2 o)^2 = 1.
a(5) = 2 because (5 o)^2 = (3:1 o)^2 = 1.
a(6) = 0 because (6 o)^k = (1:1 2:1 o)^k = 6, for all positive k.
a(7) = 2 because (7 o)^2 = (4:1 o)^1 = 1.
a(8) = 2 because (8 o)^2 = (1:3 o)^1 = 1.
a(9) = 0 because (9 o)^k = (2:2 o)^k = 9, for all positive k.
a(10) = 0 because (10 o)^k = (1:1 3:1 o)^k = 10, for all positive k.
Detail of calculation for compositional powers of 12:
(12 o)^2 = (1:2 2:1) o (1:2 2:1) = (1:1 2:2) = 18
(12 o)^3 = (1:1 2:2) o (1:2 2:1) = (1:2 2:1) = 12
Detail of calculation for compositional powers of 20:
(20 o)^2 = (1:2 3:1) o (1:2 3:1) = (3:2) = 25
(20 o)^3 = (3:2) o (1:2 3:1) = 1.
For n=718, because 718 = prime(1)^1 * prime(72)^1, its partial function primal code is (1:1 72:1), which, when composed with itself stays same (that is, A106177(718,718) = 718), thus, as 1 is never reached, a(718) = 0, like is true for all even nonsquare semiprimes.
For n=1804, as 1804 = prime(1)^2 * prime(5)^1 * prime(13)^1, its primal code is (1:2 5:1 13:1), which, when composed with itself yields 203401 = prime(5)^2 * prime(13)^2, i.e., primal code (5:2 13:2), which when composed with (1:2 5:1 13:1) yields 1, which happened on the second iteration, thus a(1804) = 2+1 = 3.
(End)


PROG

(PARI)
A106177sq(n, k) = { my(f = factor(k)); prod(i=1, #f~, f[i, 1]^valuation(n, prime(f[i, 2]))); }; \\ As in A106177.
A108352(n) = { my(orgn=n, xs=Set([]), k=1); while(n>1, if(vecsearch(xs, n), return(0)); xs = setunion([n], xs); n = A106177sq(n, orgn); k++); (k); }; \\ Antti Karttunen, Nov 20 2019


CROSSREFS



KEYWORD

nonn


AUTHOR



EXTENSIONS

Links and crossreferences added, Aug 19 2005
Term a(63) corrected and five more terms added (up to a(105)) by Antti Karttunen, Nov 20 2019


STATUS

approved



