OFFSET
1,2
COMMENTS
n is in the sequence iff the palindromic number 1(n).9.1(n) is prime (dot between numbers means concatenation). If n is in the sequence then n is not of the forms 3m, 6m+5, 22m+3, 22m+7, etc. (the proof is easy).
a(10) > 123528. - Robert Price, Sep 28 2017
REFERENCES
C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
LINKS
Patrick De Geest, World!Of Numbers, Palindromic Wing Primes (PWP's)
Makoto Kamada, Prime numbers of the form 11...11911...11
FORMULA
a(n) = (A077795(n)-1)/2.
EXAMPLE
26 is in the sequence because (10^(2*26+1)+72*10^26-1)/9=1(26).9.1(26)
= 11111111111111111111111111911111111111111111111111111 is prime.
MATHEMATICA
Do[If[PrimeQ[(10^(2n + 1) + 72*10^n - 1)/9], Print[n]], {n, 3000}]
prQ[n_]:=Module[{c=PadRight[{}, n, 1]}, PrimeQ[FromDigits[Join[c, {9}, c]]]]; Select[Range[13500], prQ] (* Harvey P. Dale, Jan 19 2014 *)
PROG
(PARI) for(n=0, 1e4, if(ispseudoprime(t=(10^(2*n+1)+72*10^n)\9), print1(t", "))) \\ Charles R Greathouse IV, Jul 15 2011
CROSSREFS
KEYWORD
nonn,more,base
AUTHOR
Farideh Firoozbakht, May 19 2005
EXTENSIONS
Edited by Ray Chandler, Dec 28 2010
a(8)-a(9) from Robert Price, Sep 28 2017
STATUS
approved