login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n such that (10^(2n+1)+72*10^n-1)/9 is prime.
45

%I #34 Jan 17 2019 13:44:08

%S 1,4,26,187,226,874,13309,34016,42589

%N Numbers n such that (10^(2n+1)+72*10^n-1)/9 is prime.

%C n is in the sequence iff the palindromic number 1(n).9.1(n) is prime (dot between numbers means concatenation). If n is in the sequence then n is not of the forms 3m, 6m+5, 22m+3, 22m+7, etc. (the proof is easy).

%C a(10) > 123528. - _Robert Price_, Sep 28 2017

%D C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.

%H Patrick De Geest, World!Of Numbers, <a href="http://www.worldofnumbers.com/wing.htm#pwp191">Palindromic Wing Primes (PWP's)</a>

%H Makoto Kamada, <a href="https://stdkmd.net/nrr/1/11911.htm#prime">Prime numbers of the form 11...11911...11</a>

%H <a href="/index/Pri#Pri_rep">Index entries for primes involving repunits</a>.

%F a(n) = (A077795(n)-1)/2.

%e 26 is in the sequence because (10^(2*26+1)+72*10^26-1)/9=1(26).9.1(26)

%e = 11111111111111111111111111911111111111111111111111111 is prime.

%t Do[If[PrimeQ[(10^(2n + 1) + 72*10^n - 1)/9], Print[n]], {n, 3000}]

%t prQ[n_]:=Module[{c=PadRight[{},n,1]},PrimeQ[FromDigits[Join[c,{9},c]]]]; Select[Range[13500],prQ] (* _Harvey P. Dale_, Jan 19 2014 *)

%o (PARI) for(n=0,1e4,if(ispseudoprime(t=(10^(2*n+1)+72*10^n)\9),print1(t", "))) \\ _Charles R Greathouse IV_, Jul 15 2011

%Y Cf. A004023, A077775-A077798, A107123-A107127, A107648, A107649, A115073, A183174-A183187.

%K nonn,more,base

%O 1,2

%A _Farideh Firoozbakht_, May 19 2005

%E Edited by _Ray Chandler_, Dec 28 2010

%E a(8)-a(9) from _Robert Price_, Sep 28 2017