login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107288
Primes whose digit sum is a square.
8
13, 31, 79, 97, 103, 211, 277, 349, 367, 439, 457, 547, 619, 673, 691, 709, 727, 853, 907, 997, 1021, 1069, 1087, 1201, 1249, 1429, 1447, 1483, 1609, 1627, 1663, 1699, 1753, 1789, 1861, 1879, 1933, 1951, 1987, 2011, 2239, 2293, 2347, 2383, 2437, 2473, 2617, 2671
OFFSET
1,1
COMMENTS
Primes in A028839. [K. D. Bajpai, Jul 08 2014]
From Altug Alkan and Waldemar Puszkarz, Apr 10 2016: All terms are congruent to 1 mod 6. Proof: For n > 2, prime(n) is 1 or 5 mod 6. If p is 5 mod 6, then it is of the form 3*k-1. For numbers of this form, the sum of digits is also of this form, as can be seen through the kind of reasoning used in proving that numbers divisible by 3 have the sum of digits divisible by 3. However, 3*k-1 can never be a square, meaning n^2+1 is never divisible by 3: any n is equal to one of 0, 1, 2 mod 3, thus by the rules of modular arithmetic, n^2+1 is 1 or 2 mod 3, never 0. Hence p must be congruent to 1 mod 6.
LINKS
EXAMPLE
79 is in the sequence because it is prime. Also, (7 + 9) = 16 = 4^2.
997 is in the sequence because it is prime. Also, (9 + 9 + 7) = 25 = 5^2.
MAPLE
with(numtheory): A107288:= proc() local a; a:=add(i, i = convert((n), base, 10))(n); if isprime(n) and root(a, 2)=floor(root(a, 2)) then RETURN (n); fi; end: seq(A107288 (), n=1..5000); # K. D. Bajpai, Jul 08 2014
MATHEMATICA
bb = {}; Do[If[IntegerQ[Sqrt[Apply[Plus, IntegerDigits[p = Prime[n]]]]], bb = Append[bb, p]], {n, 500}]; bb
PROG
(PARI) lista(nn) = {forprime(p=2, nn, if (issquare(sumdigits(p)), print1(p, ", ")); ); } \\ Michel Marcus, Apr 09 2016
CROSSREFS
Cf. A244863 (Semiprimes whose digit sum is square).
Sequence in context: A217614 A158723 A211116 * A335732 A342706 A095379
KEYWORD
nonn,base
AUTHOR
Zak Seidov, May 20 2005
EXTENSIONS
Terms a(47) and a(48) added by K. D. Bajpai, Jul 08 2014
STATUS
approved