login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A105862 n * sum_{d|n} binomial(n,d)/GCD(n,d). 3
1, 5, 10, 29, 26, 122, 50, 317, 334, 830, 122, 4754, 170, 7698, 11510, 34237, 290, 159530, 362, 458054, 358592, 1413890, 530, 8236946, 266276, 20806102, 14087530, 85118762, 842, 404242022, 962, 1244530621, 580671266, 4667223134, 35896250 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..35.

FORMULA

a(n) = n * sum_{d|n} (binomial(n, d) / GCD(n, d)).

L.g.f.: A(x) = Sum_{n>=1} LOG[ G(x^n,n)^n ] where G(x,n) = 1 + x*G(x,n)^n, where exp(A(x)) = g.f. of A110448. - Paul D. Hanna, Nov 11 2007

EXAMPLE

L.g.f.: A(x) = x + 5/2*x^2 + 10/3*x^3 + 29/4*x^4 + 26/5*x^5 + 61/3*x^6 +...

L.g.f.: A(x) = LOG[1/(1-x) * G(x^2,2)^2 * G(x^3,3)^3 * G(x^4,4)^4 *...]

where the functions G(x,n) are g.f.s of well-known sequences:

G(x,2) = g.f. of A000108 = 1 + x*G(x,2)^2;

G(x,3) = g.f. of A001764 = 1 + x*G(x,3)^3;

G(x,4) = g.f. of A002293 = 1 + x*G(x,4)^4 ; etc.

Exponentiation of l.g.f. A(x) is expressed by a product that begins:

exp(A(x)) = [1 + x + x^2 + x^3 +...] * [1 + 2*x^2 + 5*x^4 + 14*x^6 +...] * [1 + 3*x^3 + 12*x^6 + 55*x^9 +...] * [1 + 4*x^4 + 22*x^8 + 140*x^12 +...] * ...

MATHEMATICA

f[n_] := Block[{d = Divisors[n]}, n*Plus @@ (Binomial[n, d]/GCD[n, d])]; Table[ f[n], {n, 35}]

PROG

(PARI) a(n)=n*polcoeff(sum(m=1, n, m*log(1/x*serreverse(x/(1+x^m +x*O(x^n))))), n)

(PARI) a(n)=if(n<1, 0, n*sumdiv(n, d, binomial(n, d)/gcd(n, d))) \\ Paul D. Hanna, Nov 11 2007

CROSSREFS

Cf. A105861, A105863.

Cf. A134774 (exp(A(x)); A056045 (variant); A000108 (Catalan), A001764, A002293.

Sequence in context: A022094 A134129 A240515 * A093029 A105505 A005514

Adjacent sequences:  A105859 A105860 A105861 * A105863 A105864 A105865

KEYWORD

nonn

AUTHOR

Robert G. Wilson v, Apr 23 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 3 16:24 EST 2016. Contains 278745 sequences.