login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105862
a(n) = n * Sum_{d|n} binomial(n,d)/gcd(n,d).
4
1, 5, 10, 29, 26, 122, 50, 317, 334, 830, 122, 4754, 170, 7698, 11510, 34237, 290, 159530, 362, 458054, 358592, 1413890, 530, 8236946, 266276, 20806102, 14087530, 85118762, 842, 404242022, 962, 1244530621, 580671266, 4667223134, 35896250
OFFSET
1,2
FORMULA
a(n) = n * sum_{d|n} (binomial(n, d) / GCD(n, d)).
L.g.f.: A(x) = Sum_{n>=1} LOG[ G(x^n,n)^n ] where G(x,n) = 1 + x*G(x,n)^n, where exp(A(x)) = g.f. of A110448. - Paul D. Hanna, Nov 11 2007
EXAMPLE
L.g.f.: A(x) = x + 5/2*x^2 + 10/3*x^3 + 29/4*x^4 + 26/5*x^5 + 61/3*x^6 +...
L.g.f.: A(x) = LOG[1/(1-x) * G(x^2,2)^2 * G(x^3,3)^3 * G(x^4,4)^4 *...]
where the functions G(x,n) are g.f.s of well-known sequences:
G(x,2) = g.f. of A000108 = 1 + x*G(x,2)^2;
G(x,3) = g.f. of A001764 = 1 + x*G(x,3)^3;
G(x,4) = g.f. of A002293 = 1 + x*G(x,4)^4 ; etc.
Exponentiation of l.g.f. A(x) is expressed by a product that begins:
exp(A(x)) = [1 + x + x^2 + x^3 +...] * [1 + 2*x^2 + 5*x^4 + 14*x^6 +...] * [1 + 3*x^3 + 12*x^6 + 55*x^9 +...] * [1 + 4*x^4 + 22*x^8 + 140*x^12 +...] * ...
MATHEMATICA
f[n_] := Block[{d = Divisors[n]}, n*Plus @@ (Binomial[n, d]/GCD[n, d])]; Table[ f[n], {n, 35}]
PROG
(PARI) a(n)=n*polcoeff(sum(m=1, n, m*log(1/x*serreverse(x/(1+x^m +x*O(x^n))))), n)
(PARI) a(n)=if(n<1, 0, n*sumdiv(n, d, binomial(n, d)/gcd(n, d))) \\ Paul D. Hanna, Nov 11 2007
CROSSREFS
Cf. A134774 (exp(A(x)); A056045 (variant); A000108 (Catalan), A001764, A002293.
Sequence in context: A022094 A134129 A240515 * A338662 A093029 A105505
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Apr 23 2005
STATUS
approved