login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105600
Assume the conjectured terms of A105594 are the correct beginnings of the trajectories described in A003508. a(n) is a record length of b(n) iterations to arrive at the collected trajectories. This sequence cites the a(n)'s.
2
1, 5, 9, 16, 25, 43, 91, 105, 427, 463, 484, 4085, 4306, 4413, 5583, 6273, 10172, 18105, 24946, 31686, 31886
OFFSET
0,2
COMMENTS
The trajectory in A003508, etc., is defined as a(1)=n, for n>1, a(n) = a(n-1) + 1 + sum of distinct prime factors of a(n-1) that are < a(n-1).
MATHEMATICA
a[1] = 1; a[n_] := a[n] = a[n - 1] + 1 + Plus @@ Select[ Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[ a[n - 1]]], # < a[n - 1] &]; t = Table[ a[n], {n, 1500}]; f[n_] := Module[{b, k = 1}, b[1] = n; b[m_] := b[m] = b[m - 1] + 1 + Plus @@ Select[ Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[ b[m - 1]]], # < b[m - 1] &]; While[ Position[t, b[k]] == {} && k < 1000, k++ ]; If[ k == 1000, t = Select[ Union[ Join[t, Table[ b[i], {i, 2, k}]]], # > n &]; -1, k - 1]]; lst = {{1, 0}}; Do[d = f[n]; If[d > lst[[ -1, 2]], AppendTo[lst, {n, d}]], {n, 60000}]; Transpose[ lst][[1]]
CROSSREFS
Cf. A105593, the b(n)'s are in A105600.
Sequence in context: A315111 A165594 A023497 * A233184 A356675 A072174
KEYWORD
nonn
AUTHOR
R. K. Guy and Robert G. Wilson v, Apr 15 2005
STATUS
approved