login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A105324 Numbers n such that 2*reversal(n)=sigma(n). 6
6, 73, 483, 4074, 4473, 4623, 7993, 42813, 69855, 253782, 799993, 7999993, 46000023, 426000213, 4600000023, 6718967838, 42600000213, 46000000023, 79999999993, 426000000213 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

I. If p=8*10^n-7 is a prime then p is in the sequence because reversal(p)=4*10^n-3 & sigma(p)=8*10^n-6 so 2*reversal(p) =sigma(p). 73,7993,799993 & 7999993 are such terms.

II. If q=(2*10^n+1)/3 is a prime then (a): 69*q is in the sequence because 69*q=46*10^n+23; reversal (69*q)=32*10^n+64 & sigma(69*q)=96*q+96=64*10^n+128 so 2*reversal (69*q)=sigma(69*q). 483,4623 & 46000023 are such terms. (b): 639*q is in the sequence because 639*q=426*10^n+213; reversal (639*q)=312*10^n+624 & sigma(639*q)=936*q+936=624*10^n+1248 so 2*reversal(639*q)=sigma(639*q). 42813 & 426000213 are such terms.

a(21) > 10^12. - Giovanni Resta, Oct 28 2012

LINKS

Table of n, a(n) for n=1..20.

EXAMPLE

253782 is in the sequence because reversal(253782)=287352; sigma(253782)=574704 & 2*287352=574704.

MATHEMATICA

reversal[n_]:= FromDigits[Reverse[IntegerDigits[n]]]; Do[If[2* reversal[n]== DivisorSigma[1, n], Print[n]], {n, 1000000000}]

CROSSREFS

Cf. A093170, A096507, A099190, A105322, A105323, A105325, A105326.

Sequence in context: A203433 A008562 A041063 * A179568 A202557 A041060

Adjacent sequences:  A105321 A105322 A105323 * A105325 A105326 A105327

KEYWORD

base,more,nonn

AUTHOR

Farideh Firoozbakht, Apr 16 2005

EXTENSIONS

a(15)-a(19) from Donovan Johnson, Dec 21 2008

a(20) from Giovanni Resta, Oct 28 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 13 18:00 EDT 2022. Contains 356107 sequences. (Running on oeis4.)