login
A096507
Numbers k such that 6*R_k + 1 is a prime, where R_k = 11...1 is the repunit (A002275) of length k.
14
1, 2, 6, 8, 9, 11, 20, 23, 41, 63, 66, 119, 122, 149, 252, 284, 305, 592, 746, 875, 1204, 1364, 2240, 2403, 5106, 5776, 5813, 12456, 14235, 39606, 55544, 84239, 275922
OFFSET
1,2
COMMENTS
Also numbers k such that (2*10^k + 1)/3 is prime.
These numbers form a near-repdigit sequence (6)w7.
All the terms from k = 2403 through 14235 correspond to primes. - Joao da Silva (zxawyh66(AT)yahoo.com), Oct 03 2005
FORMULA
a(n) = A056657(n) + 1.
EXAMPLE
k = 9 gives 2000000001/3 = 666666667, which is prime.
k = 20 gives 66666666666666666667, which is prime.
MATHEMATICA
Select[Range@ 2500, PrimeQ[FromDigits@ Table[6, {#}] + 1] &] (* or *)
Select[Range@ 2500, PrimeQ[2 (10^# - 1)/3 + 1] &] (* Michael De Vlieger, Jul 04 2016 *)
KEYWORD
nonn
AUTHOR
Labos Elemer, Jul 12 2004
EXTENSIONS
More terms from Julien Peter Benney (jpbenney(AT)ftml.net), Sep 14 2004
39606 and 55544 from Serge Batalov, Jun 2009
84239 from Serge Batalov, Jul 06 2009 confirmed as next term by Ray Chandler, Feb 23 2012
a(33) from Kamada data by Tyler Busby, Apr 14 2024
STATUS
approved