login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A105078 Positive integers n such that n^10 + 1 is semiprime. 13
4, 16, 26, 54, 110, 120, 126, 260, 314, 420, 444, 470, 570, 646, 714, 890, 946, 1010, 1294, 1306, 1394, 1640, 1674, 1794, 1920, 1964, 2116, 2174, 2360, 2430, 2624, 2666, 2884, 2924, 3094, 3106, 3174, 3220, 3504, 3686, 3826, 3884, 3924, 4046, 4540, 4700 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

We have the polynomial factorization: n^10+1 = (n^2+1) * (n^8 - n^6 + n^4 - n^2 + 1) Hence after the initial n=1 prime the binomial can only be semiprime if n^2 + 1 is prime and n^8 - n^6 + n^4 - n^2 + 1 is prime.

LINKS

Robert Price, Table of n, a(n) for n = 1..1105

EXAMPLE

4^10+1 = 1048577 = 17 * 61681,

16^10+1 = 1099511627777 = 257 * 4278255361,

1010^10+1 = 1104622125411204510010000000001 = 1020101 * 1082855644108970101989901.

MATHEMATICA

Select[ Range[5000], PrimeQ[ #^2 + 1] && PrimeQ[(#^10 + 1)/(#^2 + 1)] &] (* Robert G. Wilson v, Apr 08 2005 *)

Select[Range[4700], PrimeOmega[#^10+1]==2&] (* Harvey P. Dale, Jan 13 2013 *)

CROSSREFS

Cf. A001358, A085722, A096173, A186669, A104238, A103854, A105041, A105066, A105078, A105122, A105142, A105237, A104335, A104479, A104494, A104657, A105282.

Sequence in context: A111350 A223221 A210002 * A050707 A134330 A046346

Adjacent sequences:  A105075 A105076 A105077 * A105079 A105080 A105081

KEYWORD

easy,nonn

AUTHOR

Jonathan Vos Post, Apr 06 2005

EXTENSIONS

More terms from Robert G. Wilson v, Apr 08 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 4 05:02 EDT 2021. Contains 346442 sequences. (Running on oeis4.)