OFFSET
0,4
COMMENTS
Riordan array (1/(1-x-x^2), x*(1+x)). - Philippe Deléham, Mar 06 2013
FORMULA
T(n,k) = sum_{j=k..n} binomial(j,n-j). - R. J. Mathar, Oct 30 2011
T(n,0) = T(n-1,0) + T(n-2,0), T(n,k) = T(n-1,k-1) + T(n-2,k-1) for k>0. - Philippe Deléham, Mar 06 2013
EXAMPLE
First few rows of the triangle are
1;
1, 1;
2, 2, 1;
3, 3, 3, 1;
5, 5, 5, 4, 1;
8, 8, 8, 8, 5, 1;
13, 13, 13, 13, 12, 6, 1;
21, 21, 21, 21, 21, 17, 7, 1;
...
Production array begins
1, 1
1, 1, 1
-1, -1, 1, 1
2, 2, -1, 1, 1
-5, -5, 2, -1, 1, 1
14, 14, -5, 2, -1, 1, 1
-42, -42, 14, -5, 2, -1, 1, 1
132, 132, -42, 14, -5, 2, -1, 1, 1
-429, -429, 132, -42, 14, -5, 2, -1, 1, 1
MAPLE
A104726 := proc(n, k)
add( binomial(j, n-j), j=k..n) ;
end proc:
seq(seq(A104726(n, k), k=0..n), n=0..10) ; # R. J. Mathar, Oct 30 2011
CROSSREFS
KEYWORD
AUTHOR
Gary W. Adamson, Mar 20 2005
STATUS
approved