login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104726
Triangle generated as the matrix product of A026729 and A000012 (triangular views), read by rows.
2
1, 1, 1, 2, 2, 1, 3, 3, 3, 1, 5, 5, 5, 4, 1, 8, 8, 8, 8, 5, 1, 13, 13, 13, 13, 12, 6, 1, 21, 21, 21, 21, 21, 17, 7, 1, 34, 34, 34, 34, 34, 33, 23, 8, 1, 55, 55, 55, 55, 55, 55, 50, 30, 9, 1, 89, 89, 89, 89, 89, 89, 88, 73, 38
OFFSET
0,4
COMMENTS
If the triangular factors A026729 and A000012 are commuted in the product, A004070 results.
Riordan array (1/(1-x-x^2), x*(1+x)). - Philippe Deléham, Mar 06 2013
FORMULA
T(n,k) = sum_{j=k..n} binomial(j,n-j). - R. J. Mathar, Oct 30 2011
T(n,0) = T(n-1,0) + T(n-2,0), T(n,k) = T(n-1,k-1) + T(n-2,k-1) for k>0. - Philippe Deléham, Mar 06 2013
T(2*n,n) = A000045(2n+1) = A001519(n+1) = A122367(n). - Philippe Deléham, Mar 06 2013
EXAMPLE
First few rows of the triangle are
1;
1, 1;
2, 2, 1;
3, 3, 3, 1;
5, 5, 5, 4, 1;
8, 8, 8, 8, 5, 1;
13, 13, 13, 13, 12, 6, 1;
21, 21, 21, 21, 21, 17, 7, 1;
...
Production array begins
1, 1
1, 1, 1
-1, -1, 1, 1
2, 2, -1, 1, 1
-5, -5, 2, -1, 1, 1
14, 14, -5, 2, -1, 1, 1
-42, -42, 14, -5, 2, -1, 1, 1
132, 132, -42, 14, -5, 2, -1, 1, 1
-429, -429, 132, -42, 14, -5, 2, -1, 1, 1
... which is based on A000108 or A168491. - Philippe Deléham, Mar 06 2013
MAPLE
A104726 := proc(n, k)
add( binomial(j, n-j), j=k..n) ;
end proc:
seq(seq(A104726(n, k), k=0..n), n=0..10) ; # R. J. Mathar, Oct 30 2011
CROSSREFS
Cf. A001629 (row sums), A026729, A004070, A000071.
Sequence in context: A294453 A097094 A210870 * A364954 A194195 A164999
KEYWORD
nonn,easy,tabl
AUTHOR
Gary W. Adamson, Mar 20 2005
STATUS
approved