OFFSET
0,3
COMMENTS
Floretion Algebra Multiplication Program, FAMP Code: a(n) = 1vesrokseq[A*B] with A = - .5'i - .5i' + .5'ii' + .5e, B = + .5'ii' - .5'jj' + .5'kk' + .5e. RokType: Y[sqa.Findk()] = Y[sqa.Findk()] + Math.signum(Y[sqa.Findk()])*p (internal program code). Note: many slight variations of the "RokType" already exist, such that it has become difficult to assign them all names.
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (3,-4,4,-3,1).
FORMULA
G.f.: x*(1 + x^3)/((1 + x^2)*(1 - x)^3).
Superseeker results:
a(2*n+1) = A001844(n) = 2*n*(n+1) + 1 (Centered square numbers);
a(n+1) - a(n) = A098180(n) (Odd numbers with two times the odd numbers repeated in order between them);
a(n+2) - a(n) = A047599(n+1) (Numbers that are congruent to {0, 3, 4, 5} mod 8);
a(n+2) - 2*a(n+1) + a(n) = A007877(n+3) (Period 4 sequence with initial period (0, 1, 2, 1));
a(n) = (1/2)*(n^2 + 1 - cos(n*Pi/2)). - Ralf Stephan, May 20 2007
From Colin Barker, Apr 29 2019: (Start)
a(n) = (2 - (-i)^n - i^n + 2*n^2) / 4 where i=sqrt(-1).
a(n) = 3*a(n-1) - 4*a(n-2) + 4*a(n-3) - 3*a(n-4) + a(n-5) for n>4. (End)
Sum_{n>=1} 1/a(n) = Pi^2/48 + (Pi/2) * tanh(Pi/2) + (Pi/(4*sqrt(2)) * tanh(Pi/(2*sqrt(2)))). - Amiram Eldar, Dec 14 2024
MATHEMATICA
LinearRecurrence[{3, -4, 4, -3, 1}, {0, 1, 3, 5, 8}, 60] (* Amiram Eldar, Dec 14 2024 *)
PROG
(PARI) concat(0, Vec(x*(1 + x)*(1 - x + x^2) / ((1 - x)^3*(1 + x^2)) + O(x^40))) \\ Colin Barker, Apr 29 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Creighton Dement, Mar 15 2005
EXTENSIONS
Stephan's formula corrected by Bruno Berselli, Apr 29 2019
STATUS
approved