login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A103897 3*2^(n-1)*(2^n-1). 3
3, 18, 84, 360, 1488, 6048, 24384, 97920, 392448, 1571328, 6288384, 25159680, 100651008, 402628608, 1610563584, 6442352640, 25769607168, 103078821888, 412316073984, 1649265868800, 6597066620928, 26388272775168, 105553103683584, 422212439900160 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Divide the sequence of natural numbers: s0=1,2,3,4,5,6,7,8,9,10,11,12,13,14,... into sections s(n) of length 2*s1-1, where s1=initial digits of s(n): s={1,2},{3,4,5,6},{7,8,9,10,11,12,13,14},... then a(n)=sum of terms of s(n):3,18,84,...

Sum of the numbers between 2^n and 2^(n+1), both excluded. - Gionata Neri, Jun 16 2015

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (6,-8).

FORMULA

a(n) = 3*A006516(n).

G.f.: 3*x/((1-2*x)*(1-4*x)). a(n+2) = A061561(4n-2). - Bruno Berselli, Sep 19 2011

MATHEMATICA

Table[3*2^(n - 1)*(2^n - 1), {n, 30}]

LinearRecurrence[{6, -8}, {3, 18}, 30] (* Harvey P. Dale, Feb 11 2018 *)

PROG

(MAGMA) [3*2^(n-1)*(2^n-1): n in [1..24]];  // Bruno Berselli, Sep 19 2011

(PARI) a(n)=3*2^(n-1)*(2^n-1) \\ Charles R Greathouse IV, Jun 08 2015

CROSSREFS

Cf. A006516.

Sequence in context: A078904 A099012 A122069 * A119424 A301996 A218924

Adjacent sequences:  A103894 A103895 A103896 * A103898 A103899 A103900

KEYWORD

nonn,easy

AUTHOR

Zak Seidov, Mar 30 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 00:01 EDT 2019. Contains 328135 sequences. (Running on oeis4.)