login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078904
a(n) = 4a(n-1) + 3n with a(0) = 0.
3
0, 3, 18, 81, 336, 1359, 5454, 21837, 87372, 349515, 1398090, 5592393, 22369608, 89478471, 357913926, 1431655749, 5726623044, 22906492227, 91625968962, 366503875905, 1466015503680, 5864062014783, 23456248059198, 93824992236861
OFFSET
0,2
FORMULA
G.f.: A(x) = -3x/(4x^3 - 9x^2 + 6x - 1).
a(n) = (1/3)*(4^(n+1) - 3*n - 4).
a(n) = 3*A014825(n). - Zerinvary Lajos, Jun 27 2007
MAPLE
a:=n->sum (4^j-1, j=1..n): seq(a(n), n=0..23); # Zerinvary Lajos, Jun 27 2007
MATHEMATICA
s=0; lst={}; Do[s+=2^n-1; AppendTo[lst, s], {n, 0, 6!, 2}]; lst (* Vladimir Joseph Stephan Orlovsky, Nov 07 2008 *)
PROG
(PARI) a(n)=(1/3)*(4^(n+1)-3*n-4)
(Sage) [gaussian_binomial(n, 1, 4)-n for n in range(1, 25)] # Zerinvary Lajos, May 29 2009
(Python)
def A078904(n): return ((1<<(n+1<<1))-4)//3-n # Chai Wah Wu, Nov 12 2024
CROSSREFS
Max ( Fr(n, k) : 1<=k<=4^(n+1)-3) where Fr(x, y) is defined in A078903.
Sequence in context: A086346 A337193 A036290 * A099012 A122069 A103897
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Dec 12 2002
EXTENSIONS
Additional formulas from Ralf Stephan, Dec 19 2002
STATUS
approved