login
A078907
Expansion of modular function j/256 in powers of m=k^2=lambda(t).
1
1, -1, 3, 0, 3, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70
OFFSET
-2,3
REFERENCES
J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 115.
A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, p. 22.
FORMULA
G.f.: (1-x+x^2)^3/(x-x^2)^2. a(n)=n, n>2.
EXAMPLE
j/256 = 1/m^2 -1/m +3 +0m +3m^2 +3m^3 +4m^4 +...
PROG
(PARI) a(n)=polcoeff((1-x+x^2)^3/(x-x^2)^2+x*O(x^n), n)
CROSSREFS
Sequence in context: A167223 A341480 A261922 * A282135 A309339 A333453
KEYWORD
sign,easy
AUTHOR
Michael Somos, Dec 12 2002
STATUS
approved