

A078907


Expansion of modular function j/256 in powers of m=k^2=lambda(t).


1



1, 1, 3, 0, 3, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,3


REFERENCES

J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 115.
A. Erdelyi, Higher Transcendental Functions, McGrawHill, 1955, Vol. 3, p. 22.


LINKS

Table of n, a(n) for n=2..70.
Index entries for linear recurrences with constant coefficients, signature (2,1).


FORMULA

G.f.: (1x+x^2)^3/(xx^2)^2. a(n)=n, n>2.


EXAMPLE

j/256 = 1/m^2 1/m +3 +0m +3m^2 +3m^3 +4m^4 +...


PROG

(PARI) a(n)=polcoeff((1x+x^2)^3/(xx^2)^2+x*O(x^n), n)


CROSSREFS

Cf. A000027, A000521.
Sequence in context: A270028 A167223 A261922 * A282135 A278923 A210485
Adjacent sequences: A078904 A078905 A078906 * A078908 A078909 A078910


KEYWORD

sign,easy


AUTHOR

Michael Somos, Dec 12 2002


STATUS

approved



