login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A078909 Let r+i*s be the sum, with multiplicity, of the first-quadrant Gaussian primes dividing n; sequence gives s values. 6
0, 2, 0, 4, 3, 2, 0, 6, 0, 5, 0, 4, 5, 2, 3, 8, 5, 2, 0, 7, 0, 2, 0, 6, 6, 7, 0, 4, 7, 5, 0, 10, 0, 7, 3, 4, 7, 2, 5, 9, 9, 2, 0, 4, 3, 2, 0, 8, 0, 8, 5, 9, 9, 2, 3, 6, 0, 9, 0, 7, 11, 2, 0, 12, 8, 2, 0, 9, 0, 5, 0, 6, 11, 9, 6, 4, 0, 7, 0, 11, 0, 11, 0, 4, 8, 2, 7, 6, 13, 5, 5, 4, 0, 2, 3, 10, 13, 2, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
A Gaussian integer z = x+iy is in the first quadrant if x > 0, y >= 0. Just one of the 4 associates z, -z, i*z, -i*z is in the first quadrant.
The sequence is fully additive.
LINKS
EXAMPLE
5 factors into the product of the primes 1+2*i, 1-2*i, but the first-quadrant associate of 1-2*i is i*(1-2*i) = 2+i, so r+i*s = 1+2*i + 2+i = 3+3*i. Therefore a(5) = 3.
MATHEMATICA
a[n_] := Module[{f = FactorInteger[n, GaussianIntegers->True]}, p = f[[;; , 1]]; e = f[[;; , 2]]; Im[Plus @@ ((If[Abs[#] == 1, 0, #]& /@ p) * e)]]; Array[a, 100] (* Amiram Eldar, Feb 28 2020 *)
CROSSREFS
Sequence in context: A359214 A265584 A360205 * A067458 A088330 A347323
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jan 11 2003
EXTENSIONS
More terms and further information from Vladeta Jovovic, Jan 27 2003
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 02:46 EDT 2024. Contains 371917 sequences. (Running on oeis4.)