login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103261
Number of partitions of 2n into parts with 10 types c^1 c^2...C^10 of each part. The even parts appear with multiplicity 1 for each type . The odd parts occur with multiplicity 2 for each part.
4
1, 20, 200, 1360, 7200, 32024, 125280, 443680, 1450240, 4435940, 12827888, 35346800, 93377920, 237675640, 585229760, 1398704736, 3253934080, 7386124520, 16392493800, 35634450320, 75992326592, 159199081600, 328027789600
OFFSET
0,2
COMMENTS
This is also Sequence(A080054)^(10) or sequence(A007096)^(5).
In general, if j > 0 and g.f. = Product_{k>=0} ((1 + x^(2*k+1))/(1 - x^(2*k+1)))^j, then a(n) ~ exp(Pi*sqrt(j*n/2)) * j^(1/4) / (2^(j/2 + 7/4) * n^(3/4)). - Vaclav Kotesovec, Aug 28 2015
FORMULA
G.f.:(theta_4(0, x^2)/theta_4(0, x))^10= (theta_3(0, x)/theta_4(0, x))^5.
a(n) ~ exp(Pi*sqrt(5*n)) * 5^(1/4) / (64 * sqrt(2) * n^(3/4)). - Vaclav Kotesovec, Aug 28 2015
EXAMPLE
a(2)=200 because we have 10 types of 4, 45 ways of writing 4 in terms of ten of 2's only or ten of 11's only and 100 ways of writing 2's combined with 11's so the total number of ways of writing 4 is 200.
MAPLE
series(product(((1+x^k)*(1-x^(2*k)))^(10)/((1-x^k)*(1+x^(2*k)))^(10), k=1..100), x=0, 100);
MATHEMATICA
nmax=60; CoefficientList[Series[Product[((1+x^(2*k+1))/(1-x^(2*k+1)))^10, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 28 2015 *)
CROSSREFS
Cf. A080054 (j=1), A007096 (j=2), A261647 (j=3), A014969 (j=4), A261648 (j=5), A014970 (j=6), A014972 (j=8).
Sequence in context: A008420 A045758 A035474 * A120796 A120787 A223753
KEYWORD
nonn
AUTHOR
Noureddine Chair, Feb 16 2005
EXTENSIONS
Example corrected by Vaclav Kotesovec, Sep 01 2015
STATUS
approved