login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A103259 Number of partitions of 2n prime to 3,5 with all odd parts occurring with even multiplicities. There is no restriction on the even parts. 2
1, 2, 4, 6, 10, 14, 20, 28, 40, 54, 72, 96, 126, 164, 212, 274, 350, 444, 560, 704, 878, 1092, 1352, 1668, 2048, 2506, 3056, 3714, 4500, 5436, 6552, 7872, 9436, 11280, 13456, 16012, 19014, 22532, 26648, 31452, 37052, 43572, 51148, 59940, 70128, 81922, 95548 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

This is also the sequence A103257/(theta_4(0,x^(15))).

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..10000

Noureddine Chair, Partition Identities From Partial Supersymmetry, arXiv:hep-th/0409011v1, 2004.

FORMULA

G.f.: (theta_4(0, x^3)*theta_4(0, x^5))/(theta_4(0, x)*theta_4(0, x^(15))).

G.f.: (E(2)*E(3)^2*E(5)^2*E(30)) / (E(1)^2*E(6)*E(10)*E(15)^2) where E(k) = prod(n>=1, 1-q^k ). - Joerg Arndt, Sep 01 2015

a(n) ~ exp(2*Pi*sqrt(2*n/15)) / (2^(3/4) * 15^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 01 2015

EXAMPLE

a(5) = 14 because 10 can be written as 8+2 = 8+1+1 = 4+4+2 = 4+4+1+1 = 4+2+2+2 = 4+2+2+1+1 = 4+2+1+1+1+1 = 4+1+1+1+1+1+1 = 2+2+2+2+2 = 2+2+2+2+1+1 = 2+2+2+1+1+1+1 = 2+2+1+1+1+1+1+1 = 2+1+1+1+1+1+1+1+1 = 1+1+1+1+1+1+1+1+1+1.

MAPLE

series(product((1+x^k)*(1-x^(3*k))*(1-x^(5*k))*(1+x^(15*k))/((1-x^k)*(1+x^(3*k))*(1+x^(5*k))*(1-x^(15*k))), k=1..100), x=0, 100);

MATHEMATICA

nmax = 50; CoefficientList[Series[Product[(1+x^k)*(1-x^(3*k))*(1-x^(5*k))*(1+x^(15*k))/((1-x^k)*(1+x^(3*k))*(1+x^(5*k))*(1-x^(15*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 01 2015 *)

PROG

(PARI)  q='q+O('q^33); E(k)=eta(q^k);

Vec( (E(2)*E(3)^2*E(5)^2*E(30)) / (E(1)^2*E(6)*E(10)*E(15)^2) ) \\ Joerg Arndt, Sep 01 2015

CROSSREFS

Cf. A102346, A103257.

Sequence in context: A277277 A241337 A103257 * A280131 A082380 A238871

Adjacent sequences:  A103256 A103257 A103258 * A103260 A103261 A103262

KEYWORD

nonn

AUTHOR

Noureddine Chair, Feb 15 2005

EXTENSIONS

Example corrected by Vaclav Kotesovec, Sep 01 2015

Maple program corrected by Vaclav Kotesovec, Sep 01 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 18 10:19 EDT 2021. Contains 343995 sequences. (Running on oeis4.)